REFERENCES

1. Du S, Lu W, Ali A, et al. A broadband fluorographene photodetector. Adv Mater 2017;29:1700463.

2. Clifford JP, Konstantatos G, Johnston KW, Hoogland S, Levina L, Sargent EH. Fast, sensitive and spectrally tuneable colloidal-quantum-dot photodetectors. Nat Nanotechnol 2009;4:40-4.

3. Patel M, Kumar M, Kim J. Polarity flipping in an isotype heterojunction (p-SnS/p-Si) to enable a broadband wavelength selective energy-efficient photodetector. J Mater Chem C 2018;6:6899-904.

4. Bao C, Yang J, Bai S, et al. High performance and stable all-inorganic metal halide perovskite-based photodetectors for optical communication applications. Adv Mater 2018;30:e1803422.

5. Li Y, Shi Z, Li X, Shan C. Photodetectors based on inorganic halide perovskites: materials and devices. Chinese Phys B 2019;28:017803.

6. Guo Q, Pospischil A, Bhuiyan M, et al. Black phosphorus mid-infrared photodetectors with high gain. Nano Lett 2016;16:4648-55.

7. Liu CH, Chang YC, Norris TB, Zhong Z. Graphene photodetectors with ultra-broadband and high responsivity at room temperature. Nat Nanotechnol 2014;9:273-8.

8. Rogalski A. Infrared detectors: status and trends. Prog Quantum Electron 2003;27:59-210.

9. Clark J, Lanzani G. Organic photonics for communications. Nat Photon 2010;4:438-46.

10. Ding N, Wu Y, Xu W, et al. A novel approach for designing efficient broadband photodetectors expanding from deep ultraviolet to near infrared. Light Sci Appl 2022;11:91.

11. Li C, Wang H, Wang F, et al. Ultrafast and broadband photodetectors based on a perovskite/organic bulk heterojunction for large-dynamic-range imaging. Light Sci Appl 2020;9:31.

12. Yao J, Yang G. 2D material broadband photodetectors. Nanoscale 2020;12:454-76.

13. Nanda Kumar Reddy N, Godavarthi S, Mohan Kumar K, et al. Evaluation of temperature dependent electrical transport parameters in Fe3O4/SiO2/n-Si metal-insulator-semiconductor (MIS) type Schottky barrier heterojunction in a wide temperature range. J Mater Sci Mater Electron 2019;30:8955-66.

14. Chesnokov S, Dolzhenko D, Ivanchik I, Khokhlov D. Far infrared high-performance lead telluride-based photodetectors for space-born applications. Infrared Phys Technol 1994;35:23-31.

15. Kind H, Yan HQ, Messer B, Law M, Yang PD. Nanowire ultraviolet photodetectors and optical switches. Adv Mater 2002;14:158-60.

16. Schaffer M, Mitkas P. Requirements and constraints for the design of smart photodetector arrays for page-oriented optical memories. IEEE J Select Topics Quantum Electron 1998;4:856-65.

17. Hu W, Li Q, Chen X, Lu W. Recent progress on advanced infrared photodetectors. Acta Phys Sin 2019;68:35.

18. Long M, Wang P, Fang H, Hu W. Progress, challenges, and opportunities for 2D material based photodetectors. Adv Funct Mater 2019;29:1803807.

19. Zhang X, John S. Broadband light-trapping enhancement of graphene absorptivity. Phys Rev B 2019:99.

20. Jia W, Ren P, Tian Y, Fan C. Dynamically tunable optical properties in graphene-based plasmon-induced transparency metamaterials. Chinese Phys B 2019;28:026102.

21. Xia C, Xue B, Wang T, Peng Y, Jia Y. Interlayer coupling effects on Schottky barrier in the arsenene-graphene van der Waals heterostructures. Appl Phys Lett 2015;107:193107.

22. Du H, Jia Y, Sun Q, Guo Z. Single vacancy defects diffusion at the initial stage of graphene growth: a first-principles study. Phys Lett A 2015;379:1270-3.

23. Cui B, Xing Y, Han J, et al. Negative photoconductivity in low-dimensional materials. Chinese Phys B 2021;30:028507.

24. Biswas C, Güneş F, Duong DL, et al. Negative and positive persistent photoconductance in graphene. Nano Lett 2011;11:4682-7.

25. Sun Z, Liu Z, Li J, Tai GA, Lau SP, Yan F. Infrared photodetectors based on CVD-grown graphene and PbS quantum dots with ultrahigh responsivity. Adv Mater 2012;24:5878-83.

26. Nakanishi H, Bishop KJ, Kowalczyk B, et al. Photoconductance and inverse photoconductance in films of functionalized metal nanoparticles. Nature 2009;460:371-5.

27. Hayden O, Agarwal R, Lieber CM. Nanoscale avalanche photodiodes for highly sensitive and spatially resolved photon detection. Nat Mater 2006;5:352-6.

28. Han Y, Zheng X, Fu M, et al. Negative photoconductivity of InAs nanowires. Phys Chem Chem Phys 2016;18:818-26.

29. Wei P, Chattopadhyay S, Yang M, et al. Room-temperature negative photoconductivity in degenerate InN thin films with a supergap excitation. Phys Rev B 2010:81.

30. Chen X, Xu Y, Zhou D, et al. Solar-blind photodetector with high avalanche gains and bias-tunable detecting functionality based on metastable phase α-Ga2O3/ZnO Isotype Heterostructures. ACS Appl Mater Interfaces 2017;9:36997-7005.

31. Wu JY, Chun YT, Li S, et al. Broadband MoS2 field-effect phototransistors: ultrasensitive visible-light photoresponse and negative infrared photoresponse. Adv Mater 2018;30:1705880.

32. Yang Y, Peng X, Kim HS, et al. Hot carrier trapping induced negative photoconductance in inas nanowires toward novel nonvolatile memory. Nano Lett 2015;15:5875-82.

33. Tielrooij KJ, Song JCW, Jensen SA, et al. Photoexcitation cascade and multiple hot-carrier generation in graphene. Nat Phys 2013;9:248-52.

34. Nomura K, MacDonald AH. Quantum hall ferromagnetism in graphene. Phys Rev Lett 2006;96:256602.

35. Kong WY, Wu GA, Wang KY, et al. Graphene-β-Ga2O3 heterojunction for highly sensitive deep UV Photodetector application. Adv Mater 2016;28:10725-31.

36. Haque MA, Li J, Abdelhady AL, et al. Transition from positive to negative photoconductance in doped hybrid perovskite semiconductors. Adv Opt Mater 2019;7:1900865.

37. Yang X, Ni P, Jing P, et al. Room temperature electrically driven ultraviolet plasmonic lasers. Adv Opt Mater 2019;7:1801681.

38. Yang X, Shan CX, Ni PN, et al. Electrically driven lasers from van der Waals heterostructures. Nanoscale 2018;10:9602-7.

39. Lu Y, Shi Z, Shan C, Shen D. ZnO-based deep-ultraviolet light-emitting devices. Chinese Phys B 2017;26:047703.

40. Shi ZF, Xu TT, Wu D, et al. Semi-transparent all-oxide ultraviolet light-emitting diodes based on ZnO/NiO-core/shell nanowires. Nanoscale 2016;8:9997-10003.

41. Shi ZF, Sun XG, Wu D, et al. High-performance planar green light-emitting diodes based on a PEDOT:PSS/CH3NH3PbBr3/ZnO sandwich structure. Nanoscale 2016;8:10035-42.

42. Guo W, Xu S, Wu Z, Wang N, Loy MM, Du S. Oxygen-assisted charge transfer between ZnO quantum dots and graphene. Small 2013;9:3031-6.

43. Liu X, Yang Y, Xing X, Wang Y. Grey level replaces fluorescent intensity: fluorescent paper sensor based on ZnO nanoparticles for quantitative detection of Cu2+ without photoluminescence spectrometer. Sensor Actuat B Chem 2018;255:2356-66.

44. Barui AK, Veeriah V, Mukherjee S, et al. Zinc oxide nanoflowers make new blood vessels. Nanoscale 2012;4:7861-9.

45. Kim K, Kim H, Choi K, Kim H, Lee J. ZnO hierarchical nanostructures grown at room temperature and their C2H5OH sensor applications. Sensor Actuat B Chem 2011;155:745-51.

46. Pichat P. Powder photocatalysts: characterization by isotopic exchanges and photoconductivity; potentialities for metal recovery, catalyst preparation and water pollutant removal. In Schiavello M. editor, Photocatalysis and environment: trends and applications. Dordrecht: Springer Netherlands. 1988. pp 399-424.

47. Tan Y, Qiao Q, Weng T, et al. Self-powered photodetector based on poly(3-hexylthiophene)/Zinc oxide quantum dots Organic-inorganic hybrid heterojunction. Chem Phys Lett 2022;806:140033.

48. Zhou YH, Zhang ZB, Xu P, Zhang H, Wang B. UV-visible photodetector based on I-type heterostructure of ZnO-QDs/monolayer MoS2. Nanoscale Res Lett 2019;14:364.

49. Zhang J, Zhang X, Ding Y, Zhu Y. ZnO/graphene/Ag composite as recyclable surface-enhanced Raman scattering substrates. Appl Opt 2016;55:9105-12.

50. Zhang BY, Liu T, Meng B, et al. Broadband high photoresponse from pure monolayer graphene photodetector. Nat Commun 2013;4:1811.

51. Zhou H, Qiu C, Yu F, et al. Thickness-dependent morphologies and surface-enhanced raman scattering of Ag deposited on n-layer graphenes. J Phys Chem C 2011;115:11348-54.

52. Wang Q, Tu Y, Ichii T, et al. Decoration of reduced graphene oxide by gold nanoparticles: an enhanced negative photoconductivity. Nanoscale 2017;9:14703-9.

53. Bhatt V, Kumar M, Kim J, Chung H, Yun J. Persistent photoconductivity in Al-doped ZnO photoconductors under air, nitrogen and oxygen ambiance: role of oxygen vacancies induced DX centers. Ceram Int 2019;45:8561-70.

54. Wang Y, Ni Z, Liu L, et al. Stacking-dependent optical conductivity of bilayer graphene. ACS Nano 2010;4:4074-80.

55. Fernando JFS, Zhang C, Firestein K, Nerkar JY, Golberg DV. ZnO quantum dots anchored in multilayered and flexible amorphous carbon sheets for high performance and stable lithium ion batteries. J Mater Chem A 2019;7:8460-71.

56. Zhou Z, Pourhashem S, Wang Z, Duan J, Zhang R, Hou B. Distinctive roles of graphene oxide, ZnO quantum dots, and their nanohybrids in anti-corrosion and anti-fouling performance of waterborne epoxy coatings. Chem Eng J 2022;439:135765.

57. Nowak E, Szybowicz M, Stachowiak A, et al. A comprehensive study of structural and optical properties of ZnO bulk crystals and polycrystalline films grown by sol-gel method. Appl Phys A 2020:126.

58. Kim HH, Lee Y, Lee YJ, et al. Realization of excitation wavelength independent blue emission of ZnO quantum dots with intrinsic defects. ACS Photonics 2020;7:723-34.

59. Han J, Wang J, Yang M, et al. Graphene/Organic semiconductor heterojunction phototransistors with broadband and bi-directional photoresponse. Adv Mater 2018;30:e1804020.

60. Williams G, Kamat PV. Graphene-semiconductor nanocomposites: excited-state interactions between ZnO nanoparticles and graphene oxide. Langmuir 2009;25:13869-73.

61. Li QH, Gao T, Wang YG, Wang TH. Adsorption and desorption of oxygen probed from ZnO nanowire films by photocurrent measurements. Appl Phys Lett 2005;86:123117.

62. Fan Z, Chang P, Lu JG, et al. Photoluminescence and polarized photodetection of single ZnO nanowires. Appl Phys Lett 2004;85:6128-30.

Microstructures
ISSN 2770-2995 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/