REFERENCES

1. Hussain AM, Hussain MM. CMOS-technology-enabled flexible and stretchable electronics for internet of everything applications. Adv Mater 2016;28:4219-49.

2. Vilouras A, Heidari H, Gupta S, Dahiya R. Modeling of CMOS devices and circuits on flexible ultrathin chips. IEEE Trans Electron Devices 2017;64:2038-46.

3. Zhang H, Xiang L, Yang Y, et al. High-performance carbon nanotube complementary electronics and integrated sensor systems on ultrathin plastic foil. ACS Nano 2018;12:2773-9.

4. Comiskey B, Albert JD, Yoshizawa H, Jacobson J. An electrophoretic ink for all-printed reflective electronic displays. Nature 1998;394:253-5.

5. Rogers JA, Bao Z, Baldwin K, et al. Paper-like electronic displays: large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks. Proc Natl Acad Sci USA 2001;98:4835-40.

6. Gelinck GH, Huitema HE, van Veenendaal E, et al. Flexible active-matrix displays and shift registers based on solution-processed organic transistors. Nat Mater 2004;3:106-10.

7. McAlpine MC, Ahmad H, Wang D, Heath JR. Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors. Nat Mater 2007;6:379-84.

8. Segev-Bar M, Haick H. Flexible sensors based on nanoparticles. ACS Nano 2013;7:8366-78.

9. Lee HS, Chung J, Hwang G, et al. Flexible inorganic piezoelectric acoustic nanosensors for biomimetic artificial hair cells. Adv Funct Mater 2014;24:6914-21.

10. Yamamoto Y, Harada S, Yamamoto D, et al. Printed multifunctional flexible device with an integrated motion sensor for health care monitoring. Sci Adv 2016;2:e1601473.

11. Wang X, Liu Z, Zhang T. Flexible sensing electronics for wearable/attachable health monitoring. Small 2017;13:1602790.

12. Chen Y, Lu S, Zhang S, et al. Skin-like biosensor system via electrochemical channels for noninvasive blood glucose monitoring. Sci Adv 2017;3:e1701629.

13. Tee BC, Chortos A, Dunn RR, Schwartz G, Eason E, Bao Z. Tunable flexible pressure sensors using microstructured elastomer geometries for intuitive electronics. Adv Funct Mater 2014;24:5427-34.

14. Wang Y, Zhu C, Pfattner R, et al. A highly stretchable, transparent, and conductive polymer. Sci Adv 2017;3:e1602076.

15. Lu L, Ding W, Liu J, Yang B. Flexible PVDF based piezoelectric nanogenerators. Nano Energy 2020;78:105251.

16. Pan L, Yu G, Zhai D, et al. Hierarchical nanostructured conducting polymer hydrogel with high electrochemical activity. Proc Natl Acad Sci USA 2012;109:9287-92.

17. Sun JY, Zhao X, Illeperuma WR, et al. Highly stretchable and tough hydrogels. Nature 2012;489:133-6.

18. Kubo M, Li X, Kim C, et al. Stretchable microfluidic radiofrequency antennas. Adv Mater 2010;22:2749-52.

19. Gao Y, Ota H, Schaler EW, et al. Wearable microfluidic diaphragm pressure sensor for health and tactile touch monitoring. Adv Mater 2017;29:1701985.

20. Yan J, Ren CE, Maleski K, et al. Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Adv Funct Mater 2017;27:1701264.

21. Gao W, Zhu Y, Wang Y, Yuan G, Liu J. A review of flexible perovskite oxide ferroelectric films and their application. J Mater 2020;6:1-16.

22. Bertoldi K, Vitelli V, Christensen J, van Hecke M. Flexible mechanical metamaterials. Nat Rev Mater 2017;2:1-11.

23. Xue Z, Song H, Rogers JA, Zhang Y, Huang Y. Mechanically-guided structural designs in stretchable inorganic electronics. Adv Mater 2020;32:e1902254.

24. Kim DH, Ahn JH, Choi WM, et al. Stretchable and foldable silicon integrated circuits. Science 2008;320:507-11.

25. Bae HJ, Bae S, Yoon J, et al. Self-organization of maze-like structures via guided wrinkling. Sci Adv 2017;3:e1700071.

26. Peraza-hernandez EA, Hartl DJ, Malak Jr RJ, Lagoudas DC. Origami-inspired active structures: a synthesis and review. Smart Mater Struct 2014;23:094001.

27. Song Z, Ma T, Tang R, et al. Origami lithium-ion batteries. Nat Commun 2014;5:3140.

28. Shyu TC, Damasceno PF, Dodd PM, et al. A kirigami approach to engineering elasticity in nanocomposites through patterned defects. Nat Mater 2015;14:785-9.

29. Callens SJ, Zadpoor AA. From flat sheets to curved geometries: origami and kirigami approaches. Materials Today 2018;21:241-64.

30. Meng Y, Zhao Y, Hu C, et al. All-graphene core-sheath microfibers for all-solid-state, stretchable fibriform supercapacitors and wearable electronic textiles. Adv Mater 2013;25:2326-31.

31. Ghosh T. Stretch, wrap, and relax to smartness. Science 2015;349:382-3.

32. Scott JF, Paz de Araujo CA. Ferroelectric memories. Science 1989;246:1400-5.

33. Auciello O, Scott JF, Ramesh R. The physics of ferroelectric memories. Phys Today 1998;51:22-7.

34. Wang J, Ma J, Huang H, et al. Ferroelectric domain-wall logic units. Nat Commun 2022;13:3255.

35. Sun H, Wang J, Wang Y, et al. Nonvolatile ferroelectric domain wall memory integrated on silicon. Nat Commun 2022;13:4332.

36. Muralt P. Ferroelectric thin films for micro-sensors and actuators: a review. J Micromecha Microeng 2000;10:136-46.

37. Damjanovic D, Muralt P, Setter N. Ferroelectric sensors. IEEE Sensors J 2001;1:191-206.

38. Kirby P, Komuro E, Imura M, Zhang Q, Su Q, Whatmore R. High frequency thin film ferroelectric acoustic resonators and filters. Integr Ferroelectr 2001;41:91-100.

39. Dragoman M, Aldrigo M, Modreanu M, Dragoman D. Extraordinary tunability of high-frequency devices using Hf0.3Zr0.7O2 ferroelectric at very low applied voltages. Appl Phys Lett 2017;110:103104.

40. Bowen CR, Kim HA, Weaver PM, Dunn S. Piezoelectric and ferroelectric materials and structures for energy harvesting applications. Energy Environ Sci 2014;7:25-44.

41. Zhang Y, Phuong PTT, Roake E, et al. Thermal energy harvesting using pyroelectric-electrochemical coupling in ferroelectric materials. Joule 2020;4:301-9.

42. Li Q, Han K, Gadinski MR, Zhang G, Wang Q. High energy and power density capacitors from solution-processed ternary ferroelectric polymer nanocomposites. Adv Mater 2014;26:6244-9.

43. Thakur VK, Gupta RK. Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects. Chem Rev 2016;116:4260-317.

44. Xu K, Shi X, Dong S, Wang J, Huang H. Antiferroelectric phase diagram enhancing energy-storage performance by phase-field simulations. ACS Appl Mater Interfaces 2022;14:25770-80.

45. Xu S, Shi X, Pan H, et al. Strain engineering of energy storage performance in relaxor ferroelectric thin film capacitors. Adv Theory Simul 2022;5:2100324.

46. Ohigashi H, Koga K, Suzuki M, Nakanishi T, Kimura K, Hashimoto N. Piezoelectric and ferroelectric properties of P (VDF-TrFE) copolymers and their application to ultrasonic transducers. Ferroelectrics 1984;60:263-76.

47. Zhang S, Li F, Jiang X, Kim J, Luo J, Geng X. Advantages and challenges of relaxor-PbTiO3 Ferroelectric crystals for electroacoustic transducers-a review. Prog Mater Sci 2015;68:1-66.

48. Zhang G, Zhang X, Huang H, et al. Toward wearable cooling devices: highly flexible electrocaloric Ba0.67Sr0.33TiO3 nanowire arrays. Adv Mater 2016;28:4811-6.

49. Gao R, Shi X, Wang J, Zhang G, Huang H. Designed giant room-temperature electrocaloric effects in metal-free organic perovskite [MDABCO](NH4)I3 by phase-field simulations. Adv Funct Mater 2021;31:2104393.

50. Qian X, Han D, Zheng L, et al. High-entropy polymer produces a giant electrocaloric effect at low fields. Nature 2021;600:664-9.

51. Gao R, Shi X, Wang J, Huang H. Understanding electrocaloric cooling of ferroelectrics guided by phase-field modeling. J Am Ceram Soc 2022;105:3689-714.

52. Ge JF, Liu ZL, Liu C, et al. Superconductivity above 100 K in single-layer FeSe films on doped SrTiO3. Nat Mater 2015;14:285-9.

53. Bégon-lours L, Rouco V, Sander A, et al. High-temperature-superconducting weak link defined by the ferroelectric field effect. Phys Rev Appl 2017:7.

54. Lynch CS, Chen L, Suo Z, Mcmeeking RM, Yang W. Crack growth in ferroelectric ceramics driven by cyclic polarization switching. J Intell Mater Syst Struct 1995;6:191-8.

55. Arias I, Serebrinsky S, Ortiz M. A phenomenological cohesive model of ferroelectric fatigue. Acta Mater 2006;54:975-84.

56. Horiuchi S, Tokura Y. Organic ferroelectrics. Nat Mater 2008;7:357-66.

57. Bhansali US, Khan M, Alshareef H. Organic ferroelectric memory devices with inkjet-printed polymer electrodes on flexible substrates. Microelect Eng 2013;105:68-73.

58. Zabek D, Taylor J, Boulbar EL, Bowen CR. Micropatterning of flexible and free standing polyvinylidene difluoride (PVDF) films for enhanced pyroelectric energy transformation. Adv Energy Mater 2015;5:1401891.

59. Owczarek M, Hujsak KA, Ferris DP, et al. Flexible ferroelectric organic crystals. Nat Commun 2016;7:13108.

60. Guo M, Jiang J, Qian J, et al. Flexible robust and high-density FeRAM from array of organic ferroelectric nano-lamellae by self-assembly. Adv Sci 2019;6:1801931.

61. Dong G, Li S, Yao M, et al. Super-elastic ferroelectric single-crystal membrane with continuous electric dipole rotation. Science 2019;366:475-9.

62. Guo C, Dong G, Zhou Z, et al. Domain evolution in bended freestanding BaTiO3 ultrathin films: a phase-field simulation. Appl Phys Lett 2020;116:152903.

63. Dong G, Li S, Li T, et al. Periodic wrinkle-patterned single-crystalline ferroelectric oxide membranes with enhanced piezoelectricity. Adv Mater 2020;32:e2004477.

64. Zhou Y, Guo C, Dong G, et al. Tip-induced in-plane ferroelectric superstructure in zigzag-wrinkled BaTiO3 thin films. Nano Lett 2022;22:2859-66.

65. Guo M, Guo C, Han J, et al. Toroidal polar topology in strained ferroelectric polymer. Science 2021;371:1050-6.

66. Dong G, Hu Y, Guo C, et al. Self-assembled epitaxial ferroelectric oxide nanospring with super-scalability. Adv Mater 2022;34:e2108419.

67. Chen X, Li Q, Chen X, et al. Nano-imprinted ferroelectric polymer nanodot arrays for high density data storage. Adv Funct Mater 2013;23:3124-9.

68. Fujikake H, Sato H, Murashige T. Polymer-stabilized ferroelectric liquid crystal for flexible displays. Displays 2004;25:3-8.

69. Sekine T, Sugano R, Tashiro T, et al. Fully printed wearable vital sensor for human pulse rate monitoring using ferroelectric polymer. Sci Rep 2018;8:4442.

70. Han X, Chen X, Tang X, Chen Y, Liu J, Shen Q. Flexible polymer transducers for dynamic recognizing physiological signals. Adv Funct Mater 2016;26:3640-8.

71. Liu Z, Xu L, Zheng Q, et al. Human motion driven self-powered photodynamic system for long-term autonomous cancer therapy. ACS Nano 2020;14:8074-83.

72. Shi Q, Wang T, Lee C. MEMS based broadband piezoelectric ultrasonic energy harvester (PUEH) for enabling self-powered implantable biomedical devices. Sci Rep 2016;6:24946.

73. Ryu J, Priya S, Park C, et al. Enhanced domain contribution to ferroelectric properties in freestanding thick films. J Appl Phys 2009;106:024108.

74. Zuo Z, Chen B, Zhan Q, et al. Preparation and ferroelectric properties of freestanding Pb(Zr,Ti)O3 thin membranes. J Phys D Appl Phys 2012;45:185302.

75. Pesquera D, Parsonnet E, Qualls A, et al. Beyond substrates: strain engineering of ferroelectric membranes. Adv Mater 2020;32:e2003780.

76. Shi Q, Parsonnet E, Cheng X, et al. The role of lattice dynamics in ferroelectric switching. Nat Commun 2022;13:1110.

77. Tian M, Xu L, Yang Y. Perovskite oxide ferroelectric thin films. Adv Elect Mater 2022;8:2101409.

78. Jin C, Zhu Y, Han W, et al. Exchange bias in flexible freestanding La0.7Sr0.3MnO3/BiFeO3 membranes. Appl Phys Lett 2020;117:252902.

79. Xu R, Huang J, Barnard ES, et al. Strain-induced room-temperature ferroelectricity in SrTiO3 membranes. Nat Commun 2020;11:3141.

80. Chang L, You L, Wang J. The path to flexible ferroelectrics: approaches and progress. Jpn J Appl Phys 2018;57:0902A3.

81. Yao M, Cheng Y, Zhou Z, Liu M. Recent progress on the fabrication and applications of flexible ferroelectric devices. J Mater Chem C 2020;8:14-27.

82. Chiabrera FM, Yun S, Li Y, et al. Freestanding perovskite oxide films: synthesis, challenges, and properties. Annalen Physik 2022;534:2200084.

83. Li S, Wang Y, Yang M, et al. Ferroelectric thin films: performance modulation and application. Mater Adv 2022;3:5735-52.

84. Won SS, Seo H, Kawahara M, et al. Flexible vibrational energy harvesting devices using strain-engineered perovskite piezoelectric thin films. Nano Energy 2019;55:182-92.

85. De Dobbelaere C, Calzada ML, Jiménez R, et al. Aqueous solutions for low-temperature photoannealing of functional oxide films: reaching the 400 °C Si-technology integration barrier. J Am Chem Soc 2011;133:12922-5.

86. Bretos I, Jiménez R, Ricote J, Calzada ML. Low-temperature crystallization of solution-derived metal oxide thin films assisted by chemical processes. Chem Soc Rev 2018;47:291-308.

87. Bretos I, Jimenez R, Ricote J, Calzada ML. Low-temperature solution approaches for the potential integration of ferroelectric oxide films in flexible electronics. IEEE Trans Ultrason Ferroelectr Freq Control 2020;67:1967-79.

88. Bretos I, Jiménez R, Ricote J, Sirera R, Calzada ML. Photoferroelectric thin films for flexible systems by a three-in-one solution-based approach. Adv Funct Mater 2020;30:2001897.

89. Barrios Ó, Jiménez R, Ricote J, Tartaj P, Calzada ML, Bretos Í. A sustainable self-induced solution seeding approach for multipurpose BiFeO3 active layers in flexible electronic devices. Adv Funct Mater 2022;32:2112944.

90. Jiang J, Bitla Y, Huang CW, et al. Flexible ferroelectric element based on van der Waals heteroepitaxy. Sci Adv 2017;3:e1700121.

91. Zheng M, Li X, Ni H, Li X, Gao J. van der Waals epitaxy for highly tunable all-inorganic transparent flexible ferroelectric luminescent films. J Mater Chem C 2019;7:8310-5.

92. Bitla Y, Chu YH. van der Waals oxide heteroepitaxy for soft transparent electronics. Nanoscale 2020;12:18523-44.

93. Lee SA, Hwang JY, Kim ES, Kim SW, Choi WS. Highly oriented SrTiO3 Thin film on graphene substrate. ACS Appl Mater Inter 2017;9:3246-50.

94. Kum HS, Lee H, Kim S, et al. Heterogeneous integration of single-crystalline complex-oxide membranes. Nature 2020;578:75-81.

95. Wong WS, Sands T, Cheung NW. Damage-free separation of GaN thin films from sapphire substrates. Appl Phys Lett 1998;72:599-601.

96. Xu J, Zhang R, Wang Y, et al. Preparation of large area freestanding GaN by laser lift-off technology. Mater Lett 2002;56:43-6.

97. Lin I, Hsieh K, Lee K, Tai N. Preparation of ferroelectric Pb(Zr1-xTix)O3/Si films by laser lift-off technique. J Eur Ceram Soc 2004;24:975-8.

98. Lee CH, Kim SJ, Oh Y, Kim MY, Yoon Y, Lee H. Use of laser lift-off for flexible device applications. J Appl Phys 2010;108:102814.

99. Zhang Y, Ma C, Lu X, Liu M. Recent progress on flexible inorganic single-crystalline functional oxide films for advanced electronics. Mater Horiz 2019;6:911-30.

100. Bakaul SR, Serrao CR, Lee M, et al. Single crystal functional oxides on silicon. Nat Commun 2016;7:10547.

101. Bakaul SR, Prokhorenko S, Zhang Q, et al. Freestanding ferroelectric bubble domains. Adv Mater 2021;33:e2105432.

102. Lu D, Baek DJ, Hong SS, Kourkoutis LF, Hikita Y, Hwang HY. Synthesis of freestanding single-crystal perovskite films and heterostructures by etching of sacrificial water-soluble layers. Nat Mater 2016;15:1255-60.

103. Baek DJ, Lu D, Hikita Y, Hwang HY, Kourkoutis LF. Ultrathin epitaxial barrier layer to avoid thermally induced phase transformation in oxide heterostructures. ACS Appl Mater Inter 2017;9:54-9.

104. Hong SS, Yu JH, Lu D, et al. Two-dimensional limit of crystalline order in perovskite membrane films. Sci Adv 2017;3:eaao5173.

105. Ji D, Cai S, Paudel TR, et al. Freestanding crystalline oxide perovskites down to the monolayer limit. Nature 2019;570:87-90.

106. Han L, Fang Y, Zhao Y, et al. Giant uniaxial strain ferroelectric domain tuning in freestanding PbTiO3 films. Adv Mater Inter 2020;7:1901604.

107. Takahashi R, Lippmaa M. Sacrificial water-soluble BaO layer for fabricating free-standing piezoelectric membranes. ACS Appl Mater Inter 2020;12:25042-9.

108. Zhong H, Li M, Zhang Q, et al. Large-scale Hf0.5Zr0.5O2 membranes with robust ferroelectricity. Adv Mater 2022;34:e2109889.

109. Guo R, You L, Lin W, et al. Continuously controllable photoconductance in freestanding BiFeO3 by the macroscopic flexoelectric effect. Nat Commun 2020;11:2571.

110. Peng B, Peng RC, Zhang YQ, et al. Phase transition enhanced superior elasticity in freestanding single-crystalline multiferroic BiFeO3 membranes. Sci Adv 2020;6:eaba5847.

111. Jin C, Zhu Y, Li X, et al. Super-flexible freestanding BiMnO3 membranes with stable ferroelectricity and ferromagnetism. Adv Sci 2021;8:e2102178.

112. Han L, Addiego C, Prokhorenko S, et al. High-density switchable skyrmion-like polar nanodomains integrated on silicon. Nature 2022;603:63-7.

113. Elangovan H, Barzilay M, Seremi S, et al. Giant superelastic piezoelectricity in flexible ferroelectric BaTiO3 membranes. ACS Nano 2020;14:5053-60.

114. Cai S, Lun Y, Ji D, et al. Enhanced polarization and abnormal flexural deformation in bent freestanding perovskite oxides. Nat Commun 2022;13:5116.

115. Chen L. Phase-field models for microstructure evolution. Annu Rev Mater Res 2002;32:113-40.

116. Artyukhin S, Delaney KT, Spaldin NA, Mostovoy M. Landau theory of topological defects in multiferroic hexagonal manganites. Nat Mater 2014;13:42-9.

117. Xue F, Wang X, Shi Y, Cheong S, Chen L. Strain-induced incommensurate phases in hexagonal manganites. Phys Rev B 2017;96:104109.

118. Wang J, Shi S, Chen L, Li Y, Zhang T. Phase-field simulations of ferroelectric/ferroelastic polarization switching. Acta Materialia 2004;52:749-64.

119. Cao W. Constructing landau-ginzburg-devonshire type models for ferroelectric systems based on symmetry. Ferroelectrics 2008;375:28-39.

120. Chen L. Phase-field method of phase transitions/domain structures in ferroelectric thin films: a review. J Am Ceram Soc 2008;91:1835-44.

121. Chen HT, Soh AK, Ni Y. Phase field modeling of flexoelectric effects in ferroelectric epitaxial thin films. Acta Mech 2014;225:1323-33.

122. Wang J, Wang B, Chen L. Understanding, predicting, and designing ferroelectric domain structures and switching guided by the phase-field method. Annu Rev Mater Res 2019;49:127-52.

123. Peng R, Cheng X, Peng B, Zhou Z, Chen L, Liu M. Domain patterns and super-elasticity of freestanding BiFeO3 membranes via phase-field simulations. Acta Materialia 2021;208:116689.

124. Peng R, Cheng X, Peng B, Zhou Z, Chen L, Liu M. Boundary conditions manipulation of polar vortex domains in BiFeO3 membranes via phase-field simulations. J Phys D Appl Phys 2021;54:495301.

125. Chen WJ, Zheng Y, Xiong WM, Feng X, Wang B, Wang Y. Effect of mechanical loads on stability of nanodomains in ferroelectric ultrathin films: towards flexible erasing of the non-volatile memories. Sci Rep 2014;4:5339.

126. Lacour S, Jones J, Suo Z, Wagner S. Design and performance of thin metal film interconnects for skin-like electronic circuits. IEEE Electron Device Lett 2004;25:179-81.

127. Cheng H, Zhang Y, Hwang K, Rogers JA, Huang Y. Buckling of a stiff thin film on a pre-strained bi-layer substrate. Int J Solids Struct 2014;51:3113-8.

128. Pan K, Ni Y, He L, Huang R. Nonlinear analysis of compressed elastic thin films on elastic substrates: from wrinkling to buckle-delamination. Int J Solids Struct 2014;51:3715-26.

129. Xu F, Potier-ferry M, Belouettar S, Cong Y. 3D finite element modeling for instabilities in thin films on soft substrates. Int J Solids Struct 2014;51:3619-32.

130. Yan D, Zhang K, Hu G. Wrinkling of structured thin films via contrasted materials. Soft Matter 2016;12:3937-42.

131. Park HG, Jeong HC, Jung YH, Seo DS. Control of the wrinkle structure on surface-reformed poly(dimethylsiloxane) via ion-beam bombardment. Sci Rep 2015;5:12356.

132. Zhu W, Low T, Perebeinos V, et al. Structure and electronic transport in graphene wrinkles. Nano Lett 2012;12:3431-6.

133. Chung JY, Nolte AJ, Stafford CM. Diffusion-controlled, self-organized growth of symmetric wrinkling patterns. Adv Mater 2009;21:1358-62.

134. Guvendiren M, Yang S, Burdick JA. Swelling-induced surface patterns in hydrogels with gradient crosslinking density. Adv Funct Mater 2009;19:3038-45.

135. Jiang H, Khang DY, Song J, Sun Y, Huang Y, Rogers JA. Finite deformation mechanics in buckled thin films on compliant supports. Proc Natl Acad Sci USA 2007;104:15607-12.

136. Hendricks TR, Wang W, Lee I. Buckling in nanomechanical films. Soft Matter 2010;6:3701.

137. Huang Z, Hong W, Suo Z. Nonlinear analyses of wrinkles in a film bonded to a compliant substrate. J Mech Phys Solids 2005;53:2101-18.

138. Genzer J, Groenewold J. Soft matter with hard skin: From skin wrinkles to templating and material characterization. Soft Matter 2006;2:310-23.

139. Audoly B, Boudaoud A. Buckling of a stiff film bound to a compliant substrate-part I: formulation, linear stability of cylindrical patterns, secondary bifurcations. J Mech Phys Solids 2008;56:2401-21.

140. Zhang Y, Zhang F, Yan Z, et al. Printing, folding and assembly methods for forming 3D mesostructures in advanced materials. Nat Rev Mater 2017:2.

141. Rogers JA, Someya T, Huang Y. Materials and mechanics for stretchable electronics. Science 2010;327:1603-7.

142. Kim JB, Kim P, Pégard NC, et al. Wrinkles and deep folds as photonic structures in photovoltaics. Nat Photon 2012;6:327-32.

143. Zhang W, Zhang Y, Qiu J, Zhao Z, Liu N. Topological structures of transition metal dichalcogenides: a review on fabrication, effects, applications, and potential. InfoMat 2021;3:133-54.

144. Stafford CM, Harrison C, Beers KL, et al. A buckling-based metrology for measuring the elastic moduli of polymeric thin films. Nat Mater 2004;3:545-50.

145. Chung JY, Nolte AJ, Stafford CM. Surface wrinkling: a versatile platform for measuring thin-film properties. Adv Mater 2011;23:349-68.

146. Dervaux J, Couder Y, Guedeau-Boudeville MA, Ben Amar M. Shape transition in artificial tumors: from smooth buckles to singular creases. Phys Rev Lett 2011;107:018103.

147. Guvendiren M, Burdick JA, Yang S. Solvent induced transition from wrinkles to creases in thin film gels with depth-wise crosslinking gradients. Soft Matter 2010;6:5795.

148. Tan Y, Hu B, Song J, Chu Z, Wu W. Bioinspired multiscale wrinkling patterns on curved substrates: an overview. Nanomicro Lett 2020;12:101.

149. Naumov II, Bellaiche L, Fu H. Unusual phase transitions in ferroelectric nanodisks and nanorods. Nature 2004;432:737-40.

150. Tang YL, Zhu YL, Ma XL, et al. Observation of a periodic array of flux-closure quadrants in strained ferroelectric PbTiO3 films. Science 2015;348:547-51.

151. Hadjimichael M, Li Y, Zatterin E, et al. Metal-ferroelectric supercrystals with periodically curved metallic layers. Nat Mater 2021;20:495-502.

152. Yadav AK, Nelson CT, Hsu SL, et al. Observation of polar vortices in oxide superlattices. Nature 2016;530:198-201.

153. Hong Z, Damodaran AR, Xue F, et al. Stability of polar vortex lattice in ferroelectric superlattices. Nano Lett 2017;17:2246-52.

154. Liu D, Shi X, Wang J, Cheng X, Huang H. Phase-field simulations of surface charge-induced ferroelectric vortex. J Phys D Appl Phys 2021;54:405302.

155. Liu D, Wang J, Jafri HM, et al. Phase-field simulations of vortex chirality manipulation in ferroelectric thin films. NPJ Quantum Mater 2022:7.

156. Das S, Tang YL, Hong Z, et al. Observation of room-temperature polar skyrmions. Nature 2019;568:368-72.

157. Zhang Y, Li Q, Huang H, Hong J, Wang X. Strain manipulation of ferroelectric skyrmion bubbles in a freestanding PbTiO3 film: a phase field simulation. Phys Rev B 2022:105.

158. Wang YJ, Feng YP, Zhu YL, et al. Polar meron lattice in strained oxide ferroelectrics. Nat Mater 2020;19:881-6.

159. Vasudevan RK, Chen YC, Tai HH, et al. Exploring topological defects in epitaxial BiFeO3 thin films. ACS Nano 2011;5:879-87.

160. Wang X, Mostovoy M, Han MG, et al. Unfolding of vortices into topological stripes in a multiferroic material. Phys Rev Lett 2014;112:247601.

161. Shimada T, Lich le V, Nagano K, Wang J, Kitamura T. Hierarchical ferroelectric and ferrotoroidic polarizations coexistent in nano-metamaterials. Sci Rep 2015;5:14653.

162. Cavallo F, Lagally MG. Semiconductors turn soft: inorganic nanomembranes. Soft Matter 2010;6:439-55.

163. Chen Z, Huang G, Trase I, Han X, Mei Y. Mechanical self-assembly of a strain-engineered flexible layer: wrinkling, rolling, and twisting. Phys Rev Applied 2016:5.

164. Yang M, Kotov NA. Nanoscale helices from inorganic materials. J Mater Chem 2011;21:6775.

165. Guo Q, Mehta AK, Grover MA, Chen W, Lynn DG, Chen Z. Shape selection and multi-stability in helical ribbons. Appl Phys Lett 2014;104:211901.

166. Guo Q, Chen Z, Li W, et al. Mechanics of tunable helices and geometric frustration in biomimetic seashells. EPL Europhys Lett 2014;105:64005.

167. Yu X, Zhang L, Hu N, et al. Shape formation of helical ribbons induced by material anisotropy. Appl Phys Lett 2017;110:091901.

168. Wang B, Gu Y, Zhang S, Chen L. Flexoelectricity in solids: progress, challenges, and perspectives. Prog Mater Sci 2019;106:100570.

Microstructures
ISSN 2770-2995 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/