REFERENCES

1. Perrut M, Caron P, Thomas M, Couret A. High temperature materials for aerospace applications: Ni-based superalloys and γ-TiAl alloys. Comptes Rendus Physique 2018;19:657-71.

2. Dimiduk DM. Gamma titanium aluminide alloys-an assessment within the competition of aerospace structural materials. Mater Sci Eng 1999;263:281-8.

3. Wu X. Review of alloy and process development of TiAl alloys. Intermetallics 2006;14:1114-22.

4. Niu HZ, Chen YY, Xiao SL, Xu LJ. Microstructure evolution and mechanical properties of a novel beta γ-TiAl alloy. Intermetallics 2012;31:225-31.

5. Clemens H, Mayer S. Design, processing, microstructure, properties, and applications of advanced intermetallic TiAl alloys. Adv Eng Mater 2013;15:191-215.

6. Kartavykh A, Asnis E, Piskun N, Statkevich I, Gorshenkov M, Korotitskiy A. A promising microstructure/deformability adjustment of β-stabilized γ-TiAl intermetallics. Mater Lett 2016;162:180-4.

7. Clemens H, Wallgram W, Kremmer S, Güther V, Otto A, Bartels A. Design of novel β-solidifying TiAl alloys with adjustable β/B2-phase fraction and excellent hot-workability. Adv Eng Mater 2008;10:707-13.

8. Mayer S, Erdely P, Fischer FD, et al. Intermetallic β-solidifying γ-TiAl based alloys - from fundamental research to application: intermetallic β-solidifying γ-TiAl based alloys. Adv Eng Mater 2017;19:1600735.

9. Kothari K, Radhakrishnan R, Wereley NM. Advances in gamma titanium aluminides and their manufacturing techniques. Prog Aerosp Sci 2012;55:1-16.

10. Thomas M, Raviart JL, Popoff F. Cast and PM processing development in gamma aluminides. Intermetallics 2005;13:944-51.

11. Sahasrabudhe H, Bose S, Bandyopadhyay A. Laser-based additive manufacturing processes. Adva Laser Mater Proc 2018:507-39.

12. Li S, Li J, Jiang Z, et al. Controlling the columnar-to-equiaxed transition during directed energy deposition of inconel 625. Addit Manufact 2022;57:102958.

13. Narayana P, Li C, Kim S, et al. High strength and ductility of electron beam melted β stabilized γ-TiAl alloy at 800 °C. Mater Sci Eng 2019;756:41-5.

14. Wartbichler R, Clemens H, Mayer S. Electron beam melting of a β-solidifying intermetallic titanium aluminide alloy. Adv Eng Mater 2019;21:1900800.

15. Baudana G, Biamino S, Klöden B, et al. Electron beam melting of Ti-48Al-2Nb-0.7Cr-0.3Si: feasibility investigation. Intermetallics 2016;73:43-9.

16. Lin B, Chen W, Yang Y, Wu F, Li Z. Anisotropy of microstructure and tensile properties of Ti-48Al-2Cr-2Nb fabricated by electron beam melting. J Alloys Compd 2020;830:154684.

17. Schwerdtfeger J, Körner C. Selective electron beam melting of Ti-48Al-2Nb-2Cr: microstructure and aluminium loss. Intermetallics 2014;49:29-35.

18. Bhavar PKV, Patil V, Khot S, Gujar K, Singh R. A review on powder bed fusion technology of metal additive manufacturing, In 4th international conference and exhibition on additive manufacturing technologies-AM-2014, 1-2 Septeber 2014, Banglore, India.

19. Sharman A, Hughes J, Ridgway K. Characterisation of titanium aluminide components manufactured by laser metal deposition. Intermetallics 2018;93:89-92.

20. Yan Z, Liu W, Tang Z, et al. Review on thermal analysis in laser-based additive manufacturing. Opt Laser Technol 2018;106:427-41.

21. Zheng B, Zhou Y, Smugeresky J, Schoenung J, Lavernia E. Thermal behavior and microstructural evolution during laser deposition with laser-engineered net shaping: part I. numerical calculations. Metall Mat Trans A 2008;39:2228-36.

22. Srivastava D, Chang ITH, Loretto MH. The effect of process parameters and heat treatment on the microstructure of direct laser fabricated TiAl alloy samples. Intermetallics 2001;9:1003-13.

23. Balla VK, Das M, Mohammad A, Al-ahmari AM. Additive manufacturing of γ-TiAl: processing, microstructure, and properties: additive manufacturing of γ-TiAl: processing. Adv Eng Mater 2016;18:1208-15.

24. Li W, Liu J, Zhou Y, et al. Effect of laser scanning speed on a Ti-45Al-2Cr-5Nb alloy processed by selective laser melting: microstructure, phase and mechanical properties. J Alloys Compd 2016;688:626-36.

25. Löber L, Schimansky FP, Kühn U, Pyczak F, Eckert J. Selective laser melting of a beta-solidifying TNM-B1 titanium aluminide alloy. J Mater Proc Technol 2014;214:1852-60.

26. Biamino S, Penna A, Ackelid U, et al. Electron beam melting of Ti-48Al-2Cr-2Nb alloy: microstructure and mechanical properties investigation. Intermetallics 2011;19:776-81.

27. Huang SH, Liu P, Mokasdar A, Hou L. Additive manufacturing and its societal impact: a literature review. Int J Adv Manuf Technol 2013;67:1191-203.

28. Zhou Y, Li W, Wang D, et al. Selective laser melting enabled additive manufacturing of Ti-22Al-25Nb intermetallic: excellent combination of strength and ductility, and unique microstructural features associated. Acta Mater 2019;173:117-29.

29. Brion DA, Shen M, Pattinson SW. Automated recognition and correction of warp deformation in extrusion additive manufacturing. Addit Manuf 2022;56:102838.

30. Abdulrahman KO, Akinlabi ET, Mahamood RM. Characteristics of laser metal deposited titanium aluminide. Mater Res Express 2019;6:046504.

31. Liu W, Dupont JN. Fabrication of carbide-particle-reinforced titanium aluminide-matrix composites by laser-engineered net shaping. Metall Mater Trans A 2004;35:1133-40.

32. Li W, Liu J, Wen S, Wei Q, Yan C, Shi Y. Crystal orientation, crystallographic texture and phase evolution in the Ti-45Al-2Cr-5Nb alloy processed by selective laser melting. Maters Charact 2016;113:125-33.

33. Xu H, Li X, Xing W, Shu L, Ma Y, Liu K. Solidification pathway and phase transformation behavior in a beta-solidified gamma-TiAl based alloy. J Mater Sci Technol 2019;35:2652-7.

34. Schwaighofer E, Clemens H, Mayer S, et al. Microstructural design and mechanical properties of a cast and heat-treated intermetallic multi-phase γ-TiAl based alloy. Intermetallics 2014;44:128-40.

35. Ramanujan R. Phase transformations in γ based titanium aluminides. Int Mater Rev 2000;45:217-40.

36. Yang G, Ren W, Liu Y, et al. Effect of pre-deformation in the β phase field on the microstructure and texture of the α phase in a boron-added β-solidifying TiAl alloy. J Alloys Compd 2018;742:304-11.

37. Hu D, Huang A, Wu X. On the massive phase transformation regime in TiAl alloys: the alloying effect on massive/lamellar competition. Intermetallics 2007;15:327-32.

38. Sankaran A, Bouzy E, Humbert M, Hazotte A. Variant selection during nucleation and growth of γ-massive phase in TiAl-based intermetallic alloys. Acta Materialia 2009;57:1230-42.

39. Sun YQ. Surface relief and the displacive transformation to the lamellar microstructure in TiAl. Philosopy Magaz Lett 1998;78:297-305.

40. Chaturvedi M, Xu Q, Richards N. Development of crack-free welds in a TiAl-based alloy. J Mater Proc Technol 2001;118:74-8.

41. Srivastava D, Chang I, Loretto M. The optimisation of processing parameters and characterisation of microstructure of direct laser fabricated TiAl alloy components. Mater Design 2000;21:425-33.

42. Denquin A, Naka S. Phase transformation mechanisms involved in two-phase TiAl-based alloys-I. lambellar structure formation. Acta Materialia 1996;44:343-52.

43. Kastenhuber M, Rashkova B, Clemens H, Mayer S. Enhancement of creep properties and microstructural stability of intermetallic β-solidifying γ-TiAl based alloys. Intermetallics 2015;63:19-26.

44. Bernal D, Chamorro X, Hurtado I, Madariaga I. Evolution of lamellar microstructures in a cast TNM alloy modified with boron through single-step heat treatments. Intermetallics 2020;124:106842.

45. Song B, Dong S, Zhang B, Liao H, Coddet C. Effects of processing parameters on microstructure and mechanical property of selective laser melted Ti6Al4V. Mater Design 2012;35:120-5.

46. Berteaux O, Popoff F, Thomas M. An experimental assessment of the effects of heat treatment on the microstructure of Ti-47Al-2Cr-2Nb powder compacts. Metall Mat Trans A 2008;39:2281-96.

47. Li M, Wu X, Yang Y, et al. TiAl/RGO (reduced graphene oxide) bulk composites with refined microstructure and enhanced nanohardness fabricated by selective laser melting (SLM). Mater Charact 2018;143:197-205.

48. Taha AS, Hammad FH. Application of the hall-petch relation to microhardness measurements on Al, Cu, Al-MD 105, and Al-Cu alloys. Physica Status Solidi 1990;119:455-62.

Microstructures
ISSN 2770-2995 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/