REFERENCES

1. Evans JSO, Hu Z, Jorgensen JD, Argyriou DN, Short S, Sleight AW. Compressibility, phase transitions, and oxygen migration in zirconium tungstate, ZrW2O8. Science 1997;275:61-5.

2. Mary TA, Evans JSO, Vogt T, Sleight AW. Negative thermal expansion from 0.3 to 1050 kelvin in ZrW2O8. Science 1996;272:90-2.

3. Iikubo S, Kodama K, Takenaka K, Takagi H, Takigawa M, Shamoto S. Local lattice distortion in the giant negative thermal expansion material Mn3Cu1-xGexN. Phys Rev Lett 2008;101:205901.

4. Gao Q, Wang J, Sanson A, et al. Discovering large isotropic negative thermal expansion in framework compound AgB(CN)4 via the concept of average atomic volume. J Am Chem Soc 2020;142:6935-9.

5. Zhao YY, Hu FX, Bao LF, et al. Giant negative thermal expansion in bonded MnCoGe-based compounds with Ni2In-type hexagonal structure. J Am Chem Soc 2015;137:1746-9.

6. Katayama N, Otsuka K, Mitamura M, Yokoyama Y, Okamoto Y, Takenaka K. Microstructural effects on negative thermal expansion extending over a wide temperature range in β-Cu1.8Zn0.2V2O7. Appl Phys Lett 2018;113:181902.

7. Song Y, Shi N, Deng S, Xing X, Chen J. Negative thermal expansion in magnetic materials. Progr Mater Sci 2021;121:100835.

8. Li CW, Tang X, Muñoz JA, et al. Structural relationship between negative thermal expansion and quartic anharmonicity of cubic ScF3. Phys Rev Lett 2011;107:195504.

9. Chen J, Xing X, Sun C, et al. Zero thermal expansion in PbTiO3-based perovskites. J Am Chem Soc 2008;130:1144-5.

10. Shen BG, Sun JR, Hu FX, Zhang HW, Cheng ZH. Recent Progress in exploring magnetocaloric materials. Adv Mater 2009;21:4545-64.

11. Liu Y, Fu X, Yu Q, Zhang M, Liu J. Significant reduction of phase-transition hysteresis for magnetocaloric (La1-xCex)2Fe11Si2Hy alloys by microstructural manipulation. Acta Materialia 2021;207:116687.

12. Wang Y, Zhang H, Liu E, et al. Outstanding comprehensive performance of La(Fe, Si)13Hy/In composite with durable service life for magnetic refrigeration. Adv Electron Mater 2018;4:1700636.

13. Fujita A, Fujieda S, Hasegawa Y, Fukamichi K. Itinerant-electron metamagnetic transition and large magnetocaloric effects in La(FexSi1-x)13 compounds and their hydrides. Phys Rev B 2003;67:104416.

14. Jia L, Sun JR, Zhang HW, Hu FX, Dong C, Shen BG. Magnetovolume effect in intermetallics LaFe13-xSix. J Phys Condens Matter 2006;18:9999-10007.

15. Huang R, Liu Y, Fan W, et al. Giant negative thermal expansion in NaZn13-type La(Fe, Si, Co)13 compounds. J Am Chem Soc 2013;135:11469-72.

16. Li W, Huang R, Wang W, et al. Enhanced negative thermal expansion in La(1-x)PrxFe10.7Co0.8Si1.5 compounds by doping the magnetic rare-earth element praseodymium. Inorg Chem 2014;53:5869-73.

17. Li S, Huang R, Zhao Y, Wang W, Han Y, Li L. Zero thermal expansion achieved by an electrolytic hydriding method in La(Fe,Si)13 compounds. Adv Funct Mater 2017;27:1604195.

18. Li S, Huang R, Zhao Y, Wang W, Li L. Cryogenic abnormal thermal expansion properties of carbon-doped La(Fe,Si)13 compounds. Phys Chem Chem Phys 2015;17:30999-1003.

19. Li S, Huang R, Zhao Y, et al. Broad negative thermal expansion operation-temperature window achieved by adjusting Fe-Fe magnetic exchange coupling in La(Fe,Si)13 compounds. Inorg Chem 2015;54:7868-72.

20. Wang J, Gong Y, Liu J, et al. Balancing negative and positive thermal expansion effect in dual-phase La(Fe,Si)13/α-Fe in-situ composite with improved compressive strength. J Alloys Compd 2018;769:233-8.

21. Zhang H, Sun Y, Niu E, Hu F, Sun J, Shen B. Enhanced mechanical properties and large magnetocaloric effects in bonded La(Fe, Si)13-based magnetic refrigeration materials. Appl Phys Lett 2014;104:062407.

22. Toby BH. EXPGUI, a graphical user interface for GSAS. J Appl Crystallogr 2001;34:210-3.

23. Bird M, Butler S, Hawkes C, Kotzer T. Numerical modeling of fluid and electrical currents through geometries based on synchrotron X-ray tomographic images of reservoir rocks using Avizo and COMSOL. Comput Geosci 2014;73:6-16.

24. Sun XM, Cong DY, Ren Y, et al. Giant negative thermal expansion in Fe-Mn-Ga magnetic shape memory alloys. Appl Phys Lett 2018;113:041903.

25. Li S, Huang R, Li W, Wang W, Zhao Y, Li L. Low-temperature negative thermal expansion behavior of LaFe11.2Al1.8-xSix compounds. J Alloys Compd 2015;646:119-23.

26. Lin JC, Tong P, Tong W, et al. Tunable negative thermal expansion related with the gradual evolution of antiferromagnetic ordering in antiperovskite manganese nitrides Ag1-xNMn3+x (0 ≤ x ≤ 0.6). Appl Phys Lett 2015;106:082405.

27. Xia W, Huang J, Sun N, Lui C, Ou Z, Song L. Influence of powder bonding on mechanical properties and magnetocaloric effects of La0.9Ce0.1(Fe,Mn)11.7Si1.3H1.8. J Alloys Compd 2015;635:124-8.

28. Shao Y, Liu J, Zhang M, et al. High-performance solid-state cooling materials: Balancing magnetocaloric and non-magnetic properties in dual phase La-Fe-Si. Acta Materialia 2017;125:506-12.

29. Wang W, Huang R, Dai H, et al. Tunable near-zero thermal expansion in the C-doped La(Fe, Si)13 compounds at cryogenic temperatures. Mater Lett 2019;237:26-8.

30. Hu J, Lin K, Cao Y, et al. Adjustable magnetic phase transition inducing unusual zero thermal expansion in cubic RCO2-based intermetallic compounds (R = rare earth). Inorg Chem 2019;58:5401-5.

31. Song Y, Chen J, Liu X, et al. Zero Thermal expansion in magnetic and metallic Tb(Co,Fe)2 intermetallic compounds. J Am Chem Soc 2018;140:602-5.

32. Fujita A, Fukamichi K, Yamada M, Goto T. Influence of pressure on itinerant electron metamagnetic transition in La(FexSi1-x)13 compounds. J Appl Phys 2003;93:7263-5.

33. Lyubina J, Schäfer R, Martin N, Schultz L, Gutfleisch O. Novel design of La(Fe,Si)13 alloys towards high magnetic refrigeration performance. Adv Mater 2010;22:3735-9.

Microstructures
ISSN 2770-2995 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/