REFERENCES

1. Li Z, Pradeep KG, Deng Y, Raabe D, Tasan CC. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off. Nature 2016;534:227-30.

2. Zhang Z, Sheng H, Wang Z, et al. Dislocation mechanisms and 3D twin architectures generate exceptional strength-ductility-toughness combination in CrCoNi medium-entropy alloy. Nat Commun 2017;8:14390.

3. Jo YH, Jung S, Choi WM, et al. Cryogenic strength improvement by utilizing room-temperature deformation twinning in a partially recrystallized VCrMnFeCoNi high-entropy alloy. Nat Commun 2017;8:15719.

4. Otto F, Dlouhý A, Somsen C, Bei H, Eggeler G, George E. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Materialia 2013;61:5743-55.

5. Rao J, Diao H, Ocelík V, et al. Secondary phases in AlxCoCrFeNi high-entropy alloys: an in-situ TEM heating study and thermodynamic appraisal. Acta Materialia 2017;131:206-20.

6. Yeh J. Alloy design strategies and future trends in high-entropy alloys. JOM 2013;65:1759-71.

7. Yeh J, Chang S, Hong Y, Chen S, Lin S. Anomalous decrease in X-ray diffraction intensities of Cu-Ni-Al-Co-Cr-Fe-Si alloy systems with multi-principal elements. Mater Chem Phys 2007;103:41-6.

8. Lee C, Chou Y, Kim G, et al. Lattice-distortion-enhanced yield strength in a refractory high-entropy alloy. Adv Mater 2020;32:e2004029.

9. Lee C, Song G, Gao MC, et al. Lattice distortion in a strong and ductile refractory high-entropy alloy. Acta Materialia 2018;160:158-72.

10. Tsai K, Tsai M, Yeh J. Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys. Acta Materialia 2013;61:4887-97.

11. Sohn SS, Kwiatkowski da Silva A, Ikeda Y, et al. Ultrastrong medium-entropy single-phase alloys designed via severe lattice distortion. Adv Mater 2019;31:e1807142.

12. Rollett A, Humphreys F, Rohrer GS, Hatherly M. Recrystallization and related annealing phenomena: second edition, recrystallization and related annealing phenomena, 2nd edition, 2004; pp. 1-628. Available from: https://www.elsevier.com/books/recrystallization-and-related-annealing-phenomena/rollett/978-0-08-044164-1 [Last accessed on 19 July 2022].

13. Lee CP. Boundary negotiating artifacts: unbinding the routine of boundary objects and embracing chaos in collaborative work. Comput Supported Coop Work 2007;16:307-39.

14. Shi Y, Yang B, Liaw P. Corrosion-resistant high-entropy alloys: a review. Metals 2017;7:43.

15. Shi Y, Yang B, Xie X, Brechtl J, Dahmen KA, Liaw PK. Corrosion of Al CoCrFeNi high-entropy alloys: Al-content and potential scan-rate dependent pitting behavior. Corros Sci 2017;119:33-45.

16. Laplanche G, Berglund S, Reinhart C, Kostka A, Fox F, George E. Phase stability and kinetics of σ-phase precipitation in CrMnFeCoNi high-entropy alloys. Acta Materialia 2018;161:338-51.

17. Schuh B, Mendez-Martin F, Volker B, et al. Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation. Acta Mater 2015;96:258-268.

18. Li S, Wang Y, Wang X. Effects of Ni content on the microstructures, mechanical properties and thermal aging embrittlement behaviors of Fe-20Cr-xNi alloys. Mater Sci Eng A 2015;639:640-6.

19. Oh K, Ahn S, Eom K, Kwon H. A study on the localized corrosion and repassivation kinetics of Fe-20Cr- x Ni ( x = 0-20 wt%) stainless steels via electrochemical analysis. Corros Sci 2015;100:158-68.

20. Misra R, Zhang Z, Venkatasurya P, Somani M, Karjalainen L. Martensite shear phase reversion-induced nanograined/ultrafine-grained Fe-16Cr-10Ni alloy: the effect of interstitial alloying elements and degree of austenite stability on phase reversion. Mater Sci Eng A 2010;527:7779-92.

21. Gu J, Song M. Annealing-induced abnormal hardening in a cold rolled CrMnFeCoNi high entropy alloy. Scripta Materialia 2019;162:345-9.

22. Moon J, Tabachnikova E, Shumilin S, et al. Deformation behavior of a Co-Cr-Fe-Ni-Mo medium-entropy alloy at extremely low temperatures. Mater Today 2021;50:55-68.

23. Bian B, Guo N, Yang H, et al. A novel cobalt-free FeMnCrNi medium-entropy alloy with exceptional yield strength and ductility at cryogenic temperature. J Alloys Comp 2020;827:153981.

24. Li D, Li C, Feng T, et al. High-entropy Al0.3CoCrFeNi alloy fibers with high tensile strength and ductility at ambient and cryogenic temperatures. Acta Materialia 2017;123:285-94.

25. Tasan CC, Deng Y, Pradeep KG, Yao MJ, Springer H, Raabe D. Composition Dependence of Phase Stability, Deformation Mechanisms, and Mechanical Properties of the CoCrFeMnNi High-Entropy Alloy System. JOM 2014;66:1993-2001.

26. Yang J, Qiao J, Ma S, Wu G, Zhao D, Wang Z. Revealing the hall-petch relationship of Al0.1CoCrFeNi high-entropy alloy and its deformation mechanisms. J Alloys Comp 2019;795:269-74.

27. Edalati K, Cubero-sesin JM, Alhamidi A, Mohamed IF, Horita Z. Influence of severe plastic deformation at cryogenic temperature on grain refinement and softening of pure metals: Investigation using high-pressure torsion. Mater Sci Eng A 2014;613:103-10.

28. Jo Y, Choi W, Kim D, et al. Utilization of brittle σ phase for strengthening and strain hardening in ductile VCrFeNi high-entropy alloy. Mater Sci Eng A 2019;743:665-74.

29. Pickering E, Muñoz-moreno R, Stone H, Jones N. Precipitation in the equiatomic high-entropy alloy CrMnFeCoNi. Scripta Materialia 2016;113:106-9.

30. Nayan N, Narayana Murty S, Jha AK, et al. Mechanical properties of aluminium-copper-lithium alloy AA2195 at cryogenic temperatures. Mater Des 2014;58:445-50.

31. Sohn SS, Hong S, Lee J, et al. Effects of Mn and Al contents on cryogenic-temperature tensile and Charpy impact properties in four austenitic high-Mn steels. Acta Materialia 2015;100:39-52.

32. Cao H, Luo X, Zhan G, Liu S. Effect of intercritical quenching on the microstructure and cryogenic mechanical properties of a 7 Pct Ni steel. Metall Mat Trans A 2017;48:4403-10.

33. Grill D, Stotter C, Sommitsch C, et al. Microstructure modeling of the dynamic recrystallization kinetics during turbine disc forging of the nickel based superalloy allvac 718 plus. 2008.

34. Zhang T, Hu J, Wang C, et al. Effects of deep cryogenic treatment on the microstructure and mechanical properties of an ultrahigh-strength TRIP-aided bainitic steel. Mater Charact 2021;178:111247.

35. Dieringa H. Influence of cryogenic temperatures on the microstructure and mechanical properties of magnesium alloys: a review. Metals 2017;7:38.

36. Jo YH, Choi W, Sohn SS, Kim HS, Lee B, Lee S. Role of brittle sigma phase in cryogenic-temperature-strength improvement of non-equi-atomic Fe-rich VCrMnFeCoNi high entropy alloys. Mater Sci Eng A 2018;724:403-10.

37. Jo Y, Kim D, Jo M, et al. Effects of deformation-induced BCC martensitic transformation and twinning on impact toughness and dynamic tensile response in metastable VCrFeCoNi high-entropy alloy. J Alloys Comp 2019;785:1056-67.

38. Wu S, Wang G, Wang Q, et al. Enhancement of strength-ductility trade-off in a high-entropy alloy through a heterogeneous structure. Acta Materialia 2019;165:444-58.

39. Yao M, Pradeep K, Tasan C, Raabe D. A novel, single phase, non-equiatomic FeMnNiCoCr high-entropy alloy with exceptional phase stability and tensile ductility. Scripta Materialia 2014;72-73:5-8.

40. Gludovatz B, Hohenwarter A, Thurston KV, et al. Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures. Nat Commun 2016;7:10602.

41. Qiao JW, Ma S, Huang E, Chuang C, Liaw P, Zhang Y. Microstructural characteristics and mechanical behaviors of AlCoCrFeNi high-entropy alloys at ambient and cryogenic temperatures. MSF 2011;688:419-25.

42. Wei R, Zhang K, Chen L, et al. Novel Co-free high performance TRIP and TWIP medium-entropy alloys at cryogenic temperatures. J Mater Sci Technol 2020;57:153-8.

43. Zherebtsov S, Stepanov N, Ivanisenko Y, et al. Evolution of microstructure and mechanical properties of a CoCrFeMnNi high-entropy alloy during high-pressure torsion at room and cryogenic temperatures. Metals 2018;8:123.

44. Geng R, Tian W, Zhao Q, Qiu F, Jiang Q. Superior Cryogenic tensile strength and ductility of in situ Al-Cu matrix composite reinforced with 0.3 wt% Nano-Sized TiCp. Adv Eng Mater 2018;20:1701137.

45. Zhang X, Wu G, Liu W, Ding W. Low temperature mechanical properties of as-extruded Mg-10Gd-3Y-0.5Zr magnesium alloy. Transact Nonferr Metals Soc China 2012;22:2883-90.

46. Cao H, Luo X, Zhan G, Liu S. Effect of Mn content on microstructure and cryogenic mechanical properties of a 7% Ni steel. Acta Metall Sin (Engl Lett ) 2018;31:699-705.

47. Jeong D, Sung H, Park T, Lee J, Kim S. Fatigue crack propagation behavior of Fe25Mn and Fe16Mn2Al steels at room and cryogenic temperatures. Met Mater Int 2016;22:601-8.

48. Kwon K, Yi I, Ha Y, et al. Origin of intergranular fracture in martensitic 8Mn steel at cryogenic temperatures. Scripta Materialia 2013;69:420-3.

49. Chen J, Ren J, Liu Z, Wang G. Interpretation of significant decrease in cryogenic-temperature Charpy impact toughness in a high manganese steel. Mater Sci Eng A 2018;737:158-65.

50. Park J, Lee K, Sung H, Kim YJ, Kim SK, Kim S. J-integral fracture toughness of high-Mn steels at room and cryogenic temperatures. Metall and Mat Trans A 2019;50:2678-89.

51. Astafurova EG, Moskvina VA, Maier GG, et al. Low-temperature tensile ductility by V-alloying of high-nitrogen CrMn and CrNiMn steels: characterization of deformation microstructure and fracture micromechanisms. Mater Sci Eng A 2019;745:265-78.

52. Idrissi H, Renard K, Schryvers D, Jacques P. On the relationship between the twin internal structure and the work-hardening rate of TWIP steels. Scripta Materialia 2010;63:961-4.

53. Komarasamy M, Kumar N, Tang Z, Mishra R, Liaw P. Effect of microstructure on the deformation mechanism of friction stir-processed Al0.1 CoCrFeNi high entropy alloy. Mater Res Lett 2015;3:30-4.

54. Ghoncheh M, Sengupta J, Wu N, Gao J, Phillion A. On the hot embrittlement of continuously-cast and transfer-bar structures in DP600 advanced high-strength steel. J Mater Proc Technol 2021;289:116936.

55. Liu X, Xue Q, Wang W, et al. Back-stress-induced strengthening and strain hardening in dual-phase steel. Materialia 2019;7:100376.

56. Liang YJ, Wang L, Wen Y, et al. High-content ductile coherent nanoprecipitates achieve ultrastrong high-entropy alloys. Nat Commun 2018;9:4063.

57. Tao K, Choo H, Li H, Clausen B, Jin J, Lee Y. Transformation-induced plasticity in an ultrafine-grained steel: an in situ neutron diffraction study. Appl Phys Lett 2007;90:101911.

58. Lu W, Liebscher CH, Yan F, et al. Interfacial nanophases stabilize nanotwins in high-entropy alloys. Acta Materialia 2020;185:218-32.

59. Guo N, Zhao Y, Long S, et al. Microstructure and mechanical properties of (CrCoNi)97Al1.5Ti1.5 medium entropy alloy twisted by free-end-torsion at room and cryogenic temperatures. Mater Sci Eng A 2020;797:140101.

60. Yang Z, He F, Wu Q, et al. Distinct recrystallization kinetics in Ni-Co-Cr-Fe-based single-phase high-entropy alloys. Metall Mater Trans A 2021;52:3799-810.

61. Gladman T. Precipitation hardening in metals. Mater Sci Technol 1999;15:30-6.

62. Lü Y, Molodov DA, Gottstein G. Recrystallization kinetics and microstructure evolution during annealing of a cold-rolled Fe-Mn-C alloy. Acta Materialia 2011;59:3229-43.

63. Lü Y, Hutchinson B, Molodov DA, Gottstein G. Effect of deformation and annealing on the formation and reversion of ε-martensite in an Fe-Mn-C alloy. Acta Materialia 2010;58:3079-90.

64. Cho S, Yoo Y. Static recrystallization kinetics of 304 stainless steels. J Mater Sci 2001;36:4273-8.

65. Ma B, Peng Y, Jia B, Liu Y. Static recrystallization kinetics model after hot deformation of low-alloy steel Q345B. J Iron Steel Res Int 2010;17:61-6.

66. Lin Y, Chen M, Zhang J. Modeling of flow stress of 42CrMo steel under hot compression. Mater Sci Eng A 2009;499:88-92.

67. Quan G, Mao A, Zou Z, Luo G, Liang J. Description of grain refinement by dynamic recrystallization under hot compressions for as-extruded 3Cr20Ni10W2 heat-resistant alloy. High Temp Mater Proc 2015;34:697-713.

68. Curtze S, Kuokkala V. Dependence of tensile deformation behavior of TWIP steels on stacking fault energy, temperature and strain rate. Acta Materialia 2010;58:5129-41.

69. Miyajima Y, Mitsuhara M, Hata S, Nakashima H, Tsuji N. Quantification of internal dislocation density using scanning transmission electron microscopy in ultrafine grained pure aluminium fabricated by severe plastic deformation. Mater Sci Eng A 2010;528:776-9.

70. Won JW, Lee T, Hong S, Lee Y, Lee JH, Lee CS. Role of deformation twins in static recrystallization kinetics of high-purity alpha titanium. Met Mater Int 2016;22:1041-8.

Microstructures
ISSN 2770-2995 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/