REFERENCES

1. Lawes G, Harris AB, Kimura T, et al. Magnetically driven ferroelectric order in Ni3V2O8. Phys Rev Lett 2005;95:087205.

2. Gareeva Z, Zvezdin K, Pyatakov A, Zvezdin A. Novel type of spin cycloid in epitaxial bismuth ferrite films. Journal of Magnetism and Magnetic Materials 2019;469:593-7.

3. Nanda KK, Addison AW, Sinn E, Thompson LK. Helical antiferromagnetic copper(II) chains with a collagen structural motif. Inorg Chem 1996;35:7462.

4. Cohen RJ. Canted ground states and the paramagnetic-antiferromagnetic transition in semiconductor zinc-blende antiferromagnets. Phys Rev B Condens Matter 1993;48:12813-6.

5. Semitelou J, Yakinthos J. The conical magnetic structure of Dy5Si3. Journal of Magnetism and Magnetic Materials 2003;265:152-5.

6. Tokura Y, Seki S. Multiferroics with spiral spin orders. Adv Mater 2010;22:1554-65.

7. Chung O, Kang W, Kim DL, Choi CH. Two rapid oscillations in the magnetoresistance in the field-induced spin-density-wave state of (TMTSF)2ClO4. Phys Rev B 2000;61:11649-55.

8. Barker J, Tretiakov OA. Static and dynamical properties of antiferromagnetic skyrmions in the presence of applied current and temperature. Phys Rev Lett 2016;116:147203.

9. Legrand W, Maccariello D, Ajejas F, et al. Room-temperature stabilization of antiferromagnetic skyrmions in synthetic antiferromagnets. Nat Mater 2020;19:34-42.

10. Tegus O, Brück E, Buschow KH, de Boer FR. Transition-metal-based magnetic refrigerants for room-temperature applications. Nature 2002;415:150-2.

11. Chang CZ, Zhang J, Feng X, et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 2013;340:167-70.

12. Kainuma R, Imano Y, Ito W, et al. Magnetic-field-induced shape recovery by reverse phase transformation. Nature 2006;439:957-60.

13. Song Y, Huang R, Liu Y, et al. Magnetic-field-induced strong negative thermal expansion in La(Fe,Al)13. Chem Mater 2020;32:7535-41.

14. Song Y, Sun Q, Xu M, et al. Negative thermal expansion in (Sc,Ti)Fe2 induced by an unconventional magnetovolume effect. Mater Horiz 2020;7:275-81.

15. Liu H, Zhou Z, Qiu Y, et al. An intriguing intermediate state as a bridge between antiferroelectric and ferroelectric perovskites. Mater Horiz 2020;7:1912-8.

16. Ma T, Fan Z, Xu B, et al. Uncompensated polarization in incommensurate modulations of perovskite antiferroelectrics. Phys Rev Lett 2019;123:217602.

17. Wei XK, Tagantsev AK, Kvasov A, Roleder K, Jia CL, Setter N. Ferroelectric translational antiphase boundaries in nonpolar materials. Nat Commun 2014;5:3031.

18. Fu Z, Chen X, Li Z, et al. Unveiling the ferrielectric nature of PbZrO3-based antiferroelectric materials. Nat Commun 2020;11:3809.

19. Chaboussant G, Crowell PA, Lévy LP, Piovesana O, Madouri A, Mailly D. Experimental phase diagram of Cu2(C5H12N2)2Cl4: a quasi-one-dimensional antiferromagnetic spin- Heisenberg ladder. Phys Rev B 1997;55:3046-9.

20. Khalyavin DD, Johnson RD, Orlandi F, Radaelli PG, Manuel P, Belik AA. Emergent helical texture of electric dipoles. Science 2020;369:680-4.

21. Wei XK, Jia CL, Du HC, Roleder K, Mayer J, Dunin-Borkowski RE. An unconventional transient phase with cycloidal order of polarization in energy-storage antiferroelectric PbZrO3. Adv Mater 2020;32:e1907208.

22. Viehland D, Forst D, Li J. Compositional heterogeneity and the origins of the multicell cubic state in Sn-doped lead zirconate titanate ceramics. Journal of Applied Physics 1994;75:4137-43.

23. Cai Y, Phillipp F, Zimmermann A, Zhou L, Aldinger F, Rühle M. TEM study of superstructure in a perovskite lead lanthanum zirconate stannate titanate ceramic. Acta Materialia 2003;51:6429-36.

24. Knudsen J, Woodward D, Reaney IM. Domain variance and superstructure across the antiferroelectric/ferroelectric phase boundary in Pb1-1.5xLax(Zr0.9TiM0.1)O3. J Mater Res ;18:262-71.

25. He H, Tan X. Electric-field-induced transformation of incommensurate modulations in antiferroelectric Pb0.99Nb0.02[(Zr1-xSnx)1-yTiy]0.98O3. Phys Rev B 2005; doi: 10.1063/1.1805179.

26. Maclaren I, Villaurrutia R, Peláiz-barranco A. Domain structures and nanostructures in incommensurate antiferroelectric PbxLa1-x(Zr0.9Ti0.1)O3. Journal of Applied Physics ;108:034109.

27. Hu T, Fu Z, Chen X, et al. Hierarchical domain structures in (Pb,La)(Zr, Sn, Ti)O3 antiferroelectric ceramics. Ceramics International 2020;46:22575-80.

28. Bikyashev EA, Reshetnikova EA, Tostunov MI. La3+ effect on dipole ordering in Pb1-xLax[Zr0.7Sn0.2Ti0.1][1-x/4]O3 (0 < x ≤ 0.03) solid solutions . Inorg Mater 2009;45:919-24.

29. Xu Z, Feng Y, Zheng S, Jin A, Wang F, Yao X. Phase transition and dielectric properties of La-doped Pb(Zr,Sn,Ti)O3 antiferroelectric ceramics under hydrostatic pressure. Materials Science and Engineering: B 2003;99:441-4.

30. Chen X, Dong X, Wang G, Cao F, Hu F, Zhang H. Dielectric and ferroelectric properties of lanthanum-modified lead zirconate stannate titanate (42/40/18) ceramics. J Am Ceram Soc 2018;101:3979-88.

31. Corker DL, Glazer AM, Dec J, Roleder K, Whatmore RW. A re-investigation of the crystal structure of the perovskite PbZrO3 by X-ray and neutron diffraction. Acta Crystallogr B Struct Sci 1997;53:135-42.

32. Yashima M, Matsuyama S, Sano R, Itoh M, Tsuda K, Fu D. Structure of ferroelectric silver niobate AgNbO3. Chem Mater 2011;23:1643-5.

33. Darlington CNW. An X-ray diffraction study of AgNbO3 and comparison with NaNbO3. Powder Diffr 1999;14:253-7.

34. Mohapatra P, Fan Z, Cui J, Tan X. Relaxor antiferroelectric ceramics with ultrahigh efficiency for energy storage applications. Journal of the European Ceramic Society 2019;39:4735-42.

35. Qi H, Zuo R, Xie A, et al. Ultrahigh energy-storage density in NaNbO3-based lead-free relaxor antiferroelectric ceramics with nanoscale domains. Adv Funct Mater 2019;29:1903877.

36. Liu H, Chen J, Fan L, et al. Critical role of monoclinic polarization rotation in high-performance perovskite piezoelectric materials. Phys Rev Lett 2017;119:017601.

37. Song Y, Huang R, Zhang J, et al. The critical role of spin rotation in the giant magnetostriction of La(Fe,Al)13. Sci China Mater 2021;64:1238-45.

38. Vousden P. The structure of ferroelectric sodium niobate at room temperature. Acta Cryst 1951;4:545-51.

39. Shannon RD, Fischer RX. Empirical electronic polarizabilities in oxides, hydroxides, oxyfluorides, and oxychlorides. Phys Rev B 2006:73.

Microstructures
ISSN 2770-2995 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/