REFERENCES
1. Lawes G, Harris AB, Kimura T, et al. Magnetically driven ferroelectric order in Ni3V2O8. Phys Rev Lett 2005;95:087205.
2. Gareeva Z, Zvezdin K, Pyatakov A, Zvezdin A. Novel type of spin cycloid in epitaxial bismuth ferrite films. Journal of Magnetism and Magnetic Materials 2019;469:593-7.
3. Nanda KK, Addison AW, Sinn E, Thompson LK. Helical antiferromagnetic copper(II) chains with a collagen structural motif. Inorg Chem 1996;35:7462.
4. Cohen RJ. Canted ground states and the paramagnetic-antiferromagnetic transition in semiconductor zinc-blende antiferromagnets. Phys Rev B Condens Matter 1993;48:12813-6.
5. Semitelou J, Yakinthos J. The conical magnetic structure of Dy5Si3. Journal of Magnetism and Magnetic Materials 2003;265:152-5.
7. Chung O, Kang W, Kim DL, Choi CH. Two rapid oscillations in the magnetoresistance in the field-induced spin-density-wave state of (TMTSF)2ClO4. Phys Rev B 2000;61:11649-55.
8. Barker J, Tretiakov OA. Static and dynamical properties of antiferromagnetic skyrmions in the presence of applied current and temperature. Phys Rev Lett 2016;116:147203.
9. Legrand W, Maccariello D, Ajejas F, et al. Room-temperature stabilization of antiferromagnetic skyrmions in synthetic antiferromagnets. Nat Mater 2020;19:34-42.
10. Tegus O, Brück E, Buschow KH, de Boer FR. Transition-metal-based magnetic refrigerants for room-temperature applications. Nature 2002;415:150-2.
11. Chang CZ, Zhang J, Feng X, et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 2013;340:167-70.
12. Kainuma R, Imano Y, Ito W, et al. Magnetic-field-induced shape recovery by reverse phase transformation. Nature 2006;439:957-60.
13. Song Y, Huang R, Liu Y, et al. Magnetic-field-induced strong negative thermal expansion in La(Fe,Al)13. Chem Mater 2020;32:7535-41.
14. Song Y, Sun Q, Xu M, et al. Negative thermal expansion in (Sc,Ti)Fe2 induced by an unconventional magnetovolume effect. Mater Horiz 2020;7:275-81.
15. Liu H, Zhou Z, Qiu Y, et al. An intriguing intermediate state as a bridge between antiferroelectric and ferroelectric perovskites. Mater Horiz 2020;7:1912-8.
16. Ma T, Fan Z, Xu B, et al. Uncompensated polarization in incommensurate modulations of perovskite antiferroelectrics. Phys Rev Lett 2019;123:217602.
17. Wei XK, Tagantsev AK, Kvasov A, Roleder K, Jia CL, Setter N. Ferroelectric translational antiphase boundaries in nonpolar materials. Nat Commun 2014;5:3031.
18. Fu Z, Chen X, Li Z, et al. Unveiling the ferrielectric nature of PbZrO3-based antiferroelectric materials. Nat Commun 2020;11:3809.
19. Chaboussant G, Crowell PA, Lévy LP, Piovesana O, Madouri A, Mailly D. Experimental phase diagram of Cu2(C5H12N2)2Cl4: a quasi-one-dimensional antiferromagnetic spin- Heisenberg ladder. Phys Rev B 1997;55:3046-9.
20. Khalyavin DD, Johnson RD, Orlandi F, Radaelli PG, Manuel P, Belik AA. Emergent helical texture of electric dipoles. Science 2020;369:680-4.
21. Wei XK, Jia CL, Du HC, Roleder K, Mayer J, Dunin-Borkowski RE. An unconventional transient phase with cycloidal order of polarization in energy-storage antiferroelectric PbZrO3. Adv Mater 2020;32:e1907208.
22. Viehland D, Forst D, Li J. Compositional heterogeneity and the origins of the multicell cubic state in Sn-doped lead zirconate titanate ceramics. Journal of Applied Physics 1994;75:4137-43.
23. Cai Y, Phillipp F, Zimmermann A, Zhou L, Aldinger F, Rühle M. TEM study of superstructure in a perovskite lead lanthanum zirconate stannate titanate ceramic. Acta Materialia 2003;51:6429-36.
24. Knudsen J, Woodward D, Reaney IM. Domain variance and superstructure across the antiferroelectric/ferroelectric phase boundary in Pb1-1.5xLax(Zr0.9TiM0.1)O3. J Mater Res ;18:262-71.
25. He H, Tan X. Electric-field-induced transformation of incommensurate modulations in antiferroelectric
26. Maclaren I, Villaurrutia R, Peláiz-barranco A. Domain structures and nanostructures in incommensurate antiferroelectric
27. Hu T, Fu Z, Chen X, et al. Hierarchical domain structures in (Pb,La)(Zr, Sn, Ti)O3 antiferroelectric ceramics. Ceramics International 2020;46:22575-80.
28. Bikyashev EA, Reshetnikova EA, Tostunov MI. La3+ effect on dipole ordering in Pb1-xLax[Zr0.7Sn0.2Ti0.1][1-x/4]O3 (0 < x ≤ 0.03) solid solutions . Inorg Mater 2009;45:919-24.
29. Xu Z, Feng Y, Zheng S, Jin A, Wang F, Yao X. Phase transition and dielectric properties of La-doped Pb(Zr,Sn,Ti)O3 antiferroelectric ceramics under hydrostatic pressure. Materials Science and Engineering: B 2003;99:441-4.
30. Chen X, Dong X, Wang G, Cao F, Hu F, Zhang H. Dielectric and ferroelectric properties of lanthanum-modified lead zirconate stannate titanate (42/40/18) ceramics. J Am Ceram Soc 2018;101:3979-88.
31. Corker DL, Glazer AM, Dec J, Roleder K, Whatmore RW. A re-investigation of the crystal structure of the perovskite PbZrO3 by
32. Yashima M, Matsuyama S, Sano R, Itoh M, Tsuda K, Fu D. Structure of ferroelectric silver niobate AgNbO3. Chem Mater 2011;23:1643-5.
33. Darlington CNW. An X-ray diffraction study of AgNbO3 and comparison with NaNbO3. Powder Diffr 1999;14:253-7.
34. Mohapatra P, Fan Z, Cui J, Tan X. Relaxor antiferroelectric ceramics with ultrahigh efficiency for energy storage applications. Journal of the European Ceramic Society 2019;39:4735-42.
35. Qi H, Zuo R, Xie A, et al. Ultrahigh energy-storage density in NaNbO3-based lead-free relaxor antiferroelectric ceramics with nanoscale domains. Adv Funct Mater 2019;29:1903877.
36. Liu H, Chen J, Fan L, et al. Critical role of monoclinic polarization rotation in high-performance perovskite piezoelectric materials. Phys Rev Lett 2017;119:017601.
37. Song Y, Huang R, Zhang J, et al. The critical role of spin rotation in the giant magnetostriction of La(Fe,Al)13. Sci China Mater 2021;64:1238-45.
38. Vousden P. The structure of ferroelectric sodium niobate at room temperature. Acta Cryst 1951;4:545-51.