REFERENCES

1. Yang D, Du P, Wu D, Yi H. The microstructure evolution and tensile properties of medium-Mn steel heat-treated by a two-step annealing process. Journal of Materials Science & Technology 2021;75:205-15.

2. Li X, Song R, Zhou N, Li J. An ultrahigh strength and enhanced ductility cold-rolled medium-Mn steel treated by intercritical annealing. Scripta Materialia 2018;154:30-3.

3. Zhang X, Yan J, Liu T, et al. Microstructural evolution and mechanical behavior of a novel heterogeneous medium Mn cold-rolled steel. Materials Science and Engineering: A 2021;800:140344.

4. Aydin H, Essadiqi E, Jung I, Yue S. Development of 3rd generation AHSS with medium Mn content alloying compositions. Materials Science and Engineering: A 2013;564:501-8.

5. Chiang J, Lawrence B, Boyd J, Pilkey A. Effect of microstructure on retained austenite stability and work hardening of TRIP steels. Materials Science and Engineering: A 2011;528:4516-21.

6. Gibbs PJ, De Moor E, Merwin MJ, Clausen B, Speer JG, Matlock DK. Austenite Stability Effects on Tensile Behavior of Manganese-Enriched-Austenite Transformation-Induced Plasticity Steel. Metall and Mat Trans A 2011;42:3691-702.

7. Han J, Lee Y. The effects of the heating rate on the reverse transformation mechanism and the phase stability of reverted austenite in medium Mn steels. Acta Materialia 2014;67:354-61.

8. Cai Z, Ding H, Misra R, Ying Z. Austenite stability and deformation behavior in a cold-rolled transformation-induced plasticity steel with medium manganese content. Acta Materialia 2015;84:229-36.

9. Chiang J, Boyd J, Pilkey A. Effect of microstructure on retained austenite stability and tensile behaviour in an aluminum-alloyed TRIP steel. Materials Science and Engineering: A 2015;638:132-42.

10. Hu B, Luo H. A novel two-step intercritical annealing process to improve mechanical properties of medium Mn steel. Acta Materialia 2019;176:250-63.

11. Jang J, Kim S, Kang NH, Cho K, Suh D. Effects of annealing conditions on microstructure and mechanical properties of low carbon, manganese transformation-induced plasticity steel. Met Mater Int 2009;15:909-16.

12. Lee S, Lee S, De Cooman BC. Austenite stability of ultrafine-grained transformation-induced plasticity steel with Mn partitioning. Scripta Materialia 2011;65:225-8.

13. Han J, Lee S, Jung J, Lee Y. The effects of the initial martensite microstructure on the microstructure and tensile properties of intercritically annealed Fe–9Mn–0.05C steel. Acta Materialia 2014;78:369-77.

14. Li Z, Wang T, Zhang X, Zhang F. Annealing softening behaviour of cold-rolled low-carbon steel with a dual-phase structure and the resulting tensile properties. Materials Science and Engineering: A 2012;552:204-10.

15. Benzing JT, Luecke WE, Mates SP, Ponge D, Raabe D, Wittig JE. Intercritical annealing to achieve a positive strain-rate sensitivity of mechanical properties and suppression of macroscopic plastic instabilities in multi-phase medium-Mn steels. Mater Sci Eng A Struct Mater 2021;803:140469.

16. Wu Y, Sun W, Styles M, Arlazarov A, Hutchinson C. Cementite coarsening during the tempering of Fe-C-Mn martensite. Acta Materialia 2018;159:209-24.

17. Yan S, Liu X, Liang T, Zhao Y. The effects of the initial microstructure on microstructural evolution, mechanical properties and reversed austenite stability of intercritically annealed Fe-6.1Mn-1.5Si-0.12C steel. Materials Science and Engineering: A 2018;712:332-40.

18. Luo H, Dong H, Huang M. Effect of intercritical annealing on the Lüders strains of medium Mn transformation-induced plasticity steels. Materials & Design 2015;83:42-8.

19. Ding R, Dai Z, Huang M, et al. Effect of pre-existed austenite on austenite reversion and mechanical behavior of an Fe-0.2C-8Mn-2Al medium Mn steel. Acta Materialia 2018;147:59-69.

20. Cao W, Wang C, Shi J, Wang M, Hui W, Dong H. Microstructure and mechanical properties of Fe–0.2C–5Mn steel processed by ART-annealing. Materials Science and Engineering: A 2011;528:6661-6.

21. Li S, Wen P, Li S, Song W, Wang Y, Luo H. A novel medium-Mn steel with superior mechanical properties and marginal oxidization after press hardening. Acta Materialia 2021;205:116567.

22. Sarkar A, Sanyal S, Bandyopadhyay TK, Mandal S. Recrystallization behaviour and tensile properties of Al-added medium-Mn-steel at different deformation-annealing conditions. Materials Science and Technology 2018;35:2054-68.

23. Zheng C, Raabe D. Interaction between recrystallization and phase transformation during intercritical annealing in a cold-rolled dual-phase steel: A cellular automaton model. Acta Materialia 2013;61:5504-17.

24. Jo MC, Lee H, Zargaran A, et al. Exceptional combination of ultra-high strength and excellent ductility by inevitably generated Mn-segregation in austenitic steel. Materials Science and Engineering: A 2018;737:69-76.

25. Yang DZ, Brown EL, Matlock DK, Krauss G. Ferrite recrystallization and austenite formation in cold-rolled intercritically annealed steel. MTA 1985;16:1385-92.

26. Zhu Y, Hu B, Luo H. Influence of Nb and V on Microstructure and Mechanical Properties of Hot-Rolled Medium Mn Steels. steel research int 2018;89:1700389.

27. Sun B, Ma Y, Vanderesse N, et al. Macroscopic to nanoscopic in situ investigation on yielding mechanisms in ultrafine grained medium Mn steels: Role of the austenite-ferrite interface. Acta Materialia 2019;178:10-25.

28. Hu B, Ding F, Tu X, et al. Influence of lamellar and equiaxed microstructural morphologies on yielding behaviour of a medium Mn steel. Materialia 2021;20:101252.

Microstructures
ISSN 2770-2995 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/