REFERENCES
1. Wang Y, Skaanvik SA, Xiong X, Wang S, Dong M. Scanning probe microscopy for electrocatalysis. Matter 2021;4:3483-514.
2. Yue Q, Shao Z, Chang S, Li J. Adsorption of gas molecules on monolayer MoS2 and effect of applied electric field. Nanoscale Res Lett 2013;8:425.
3. Tang S, Cao Z. Adsorption of nitrogen oxides on graphene and graphene oxides: insights from density functional calculations. J Chem Phys 2011;134:044710.
4. Ao Z, Li S, Jiang Q. Correlation of the applied electrical field and CO adsorption/desorption behavior on Al-doped graphene. Solid State Commun 2010;150:680-3.
5. Park S, Lee CW, Kang MG, et al. A ferroelectric photocatalyst for enhancing hydrogen evolution: polarized particulate suspension. Phys Chem Chem Phys 2014;16:10408-13.
6. Garra J, Vohs J, Bonnell D. The effect of ferroelectric polarization on the interaction of water and methanol with the surface of LiNbO3(0001). Surf Sci 2009;603:1106-14.
7. Kakekhani A, Ismail-beigi S, Altman EI. Ferroelectrics: a pathway to switchable surface chemistry and catalysis. Surf Sci 2016;650:302-16.
8. Watanabe Y, Okano M, Masuda A. Surface conduction on insulating BaTiO3 crystal suggesting an intrinsic surface electron layer. Phys Rev Lett 2001;86:332-5.
9. Yang W, Rodriguez BJ, Gruverman A, Nemanich RJ. Polarization-dependent electron affinity of LiNbO3 surfaces. Appl Phys Lett 2004;85:2316-8.
10. Sones CL, Mailis S, Brocklesby WS, Eason RW, Owen JR. Differential etch rates in z-cut LiNbO3 for variable HF/HNO3 concentrations. J Mater Chem 2002;12:295-8.
11. Kakekhani A, Ismail-Beigi S. Polarization-driven catalysis via ferroelectric oxide surfaces. Phys Chem Chem Phys 2016;18:19676-95.
12. Cui Y, Briscoe J, Dunn S. Effect of Ferroelectricity on solar-light-driven photocatalytic activity of BaTiO3 - influence on the carrier separation and stern layer formation. Chem Mater 2013;25:4215-23.
13. Li S, Bai L, Ji N, et al. Ferroelectric polarization and thin-layered structure synergistically promoting CO2 photoreduction of Bi2MoO6. J Mater Chem A 2020;8:9268-77.
14. Ju L, Tang X, Li J, Shi L, Yuan D. Breaking the out-of-plane symmetry of Janus WSSe bilayer with chalcogen substitution for enhanced photocatalytic overall water-splitting. Appl Surf Sci 2022;574:151692.
15. Yuan Y, Reece TJ, Sharma P, et al. Efficiency enhancement in organic solar cells with ferroelectric polymers. Nat Mater 2011;10:296-302.
16. Garcia V, Bibes M, Bocher L, et al. Ferroelectric control of spin polarization. Science 2010;327:1106-10.
17. Morris MR, Pendlebury SR, Hong J, Dunn S, Durrant JR. Effect of internal electric fields on charge carrier dynamics in a ferroelectric material for solar energy conversion. Adv Mater 2016;28:7123-8.
18. Wu Q, Ma Y, Wang H, Zhang S, Huang B, Dai Y. Trifunctional electrocatalysts with high efficiency for the oxygen reduction reaction, oxygen evolution reaction, and Na-O2 battery in heteroatom-doped Janus monolayer MoSSe. ACS Appl Mater Interfaces 2020;12:24066-73.
19. Kushwaha HS, Halder A, Vaish R. Ferroelectric electrocatalysts: a new class of materials for oxygen evolution reaction with synergistic effect of ferroelectric polarization. J Mater Sci 2018;53:1414-23.
20. Ju L, Bie M, Tang X, Shang J, Kou L. Janus WSSe monolayer: an excellent photocatalyst for overall water splitting. ACS Appl Mater Interfaces 2020;12:29335-43.
21. Shang J, Tang X, Kou L. Two dimensional ferroelectrics: candidate for controllable physical and chemical applications. WIREs Comput Mol Sci 2021:11.
22. Wan TL, Ge L, Pan Y, et al. Catalysis based on ferroelectrics: controllable chemical reaction with boosted efficiency. Nanoscale 2021;13:7096-107.
23. Abrahams SC, Nassau K. . Ferroelectric materials. Concise encyclopedia of advanced ceramic materials. Elsevier; 1991. p. 152-5.
24. Su Y, Li Q, Amagat J, Chen M. 3D spring-based piezoelectric energy generator. Nano Energy 2021;90:106578.
25. Joshi JC, Dawar AL. Pyroelectric materials, their properties and applications. phys stat sol (a) 1982;70:353-69.
26. Xiao J, Zhu H, Wang Y, et al. Intrinsic two-dimensional ferroelectricity with dipole locking. Phys Rev Lett 2018;120:227601.
27. Cao Y, Li Q, Huijben M, Vasudevan RK, Kalinin SV, Maksymovych P. Electronic switching by metastable polarization states in BiFeO3 thin films. Phys Rev Materials 2018;2:094401.
28. Yang X, Su X, Shen M, et al. Enhancement of photocurrent in ferroelectric films via the incorporation of narrow bandgap nanoparticles. Adv Mater 2012;24:1202-8.
29. Zubko P, Jung DJ, Scott JF. Electrical characterization of PbZr0.4Ti0.6O3 capacitors. J Appl Phys 2006;100:114113.
30. Xue F, Liang L, Gu Y, Takeuchi I, Kalinin SV, Chen L. Composition- and pressure-induced ferroelectric to antiferroelectric phase transitions in Sm-doped BiFeO3 system. Appl Phys Lett 2015;106:012903.
31. Park SM, Wang B, Das S, et al. Selective control of multiple ferroelectric switching pathways using a trailing flexoelectric field. Nat Nanotechnol 2018;13:366-70.
32. Zhang JX, Schlom DG, Chen LQ, Eom CB. Tuning the remanent polarization of epitaxial ferroelectric thin films with strain. Appl Phys Lett 2009;95:122904.
33. Li H, Sang Y, Chang S, et al. Enhanced ferroelectric-nanocrystal-based hybrid photocatalysis by ultrasonic-wave-generated piezophototronic effect. Nano Lett 2015;15:2372-9.
34. Akamatsu H, Yuan Y, Stoica VA, et al. Light-activated gigahertz ferroelectric domain dynamics. Phys Rev Lett 2018;120:096101.
35. Li T, Lipatov A, Lu H, et al. Optical control of polarization in ferroelectric heterostructures. Nat Commun 2018;9:3344.
36. Sezen H, Suzer S. XPS for chemical- and charge-sensitive analyses. Thin Solid Films 2013;534:1-11.
37. Tănase LC, Apostol NG, Abramiuc LE, et al. Ferroelectric triggering of carbon monoxide adsorption on lead zirco-titanate (001) surfaces. Sci Rep 2016;6:35301.
38. Pintilie L, Ghica C, Teodorescu CM, et al. Polarization induced self-doping in epitaxial Pb(Zr0.20Ti0.80)O3 thin films. Sci Rep 2015;5:14974.
39. Apostol NG, Stoflea LE, Lungu GA, et al. Band bending at free Pb(Zr,Ti)O3 surfaces analyzed by X-ray photoelectron spectroscopy. Mater Sci Eng B 2013;178:1317-22.
40. Popescu DG, HuÅŸanu MA, Trupina Combining Caron L, et al. Spectro-microscopic photoemission evidence of charge uncompensated areas in Pb(Zr,Ti)O3(001) layers. Phys Chem Chem Phys 2015;17:509-20.
41. Abramiuc LE, Tănase LC, Barinov A, et al. Polarization landscape effects in soft X-ray-induced surface chemical decomposition of lead zirco-titanate, evidenced by photoelectron spectromicroscopy. Nanoscale 2017;9:11055-67.
42. HuÅŸanu MA, Popescu DG, Tache CA, et al. Photoelectron spectroscopy and spectro-microscopy of Pb(Zr,Ti)O3 (111) thin layers: Imaging ferroelectric domains with binding energy contrast. Appl Surf Sci 2015;352:73-81.
43. Tian Y, Wei L, Zhang Q, et al. Water printing of ferroelectric polarization. Nat Commun 2018;9:3809.
44. Wang RV, Fong DD, Jiang F, et al. Reversible chemical switching of a ferroelectric film. Phys Rev Lett 2009;102:047601.
45. Highland MJ, Fister TT, Fong DD, et al. Equilibrium polarization of ultrathin PbTiO3 with surface compensation controlled by oxygen partial pressure. Phys Rev Lett 2011;107:187602.
46. Highland MJ, Fister TT, Richard MI, et al. Polarization switching without domain formation at the intrinsic coercive field in ultrathin ferroelectric PbTiO3. Phys Rev Lett 2010;105:167601.
47. Liu D, Zhao R, Jafri HM, Wang J, Huang H. Phase-field simulations of surface charge-induced polarization switching. Appl Phys Lett 2019;114:112903.
48. Deleuze P, Domenichini B, Dupont C. Ferroelectric polarization switching induced from water adsorption in BaTiO3 ultrathin films. Phys Rev B 2020;101:075410.
49. Deleuze PM, Mahmoud A, Domenichini B, Dupont C. Theoretical investigation of the platinum substrate influence on BaTiO3 thin film polarisation. Phys Chem Chem Phys 2019;21:4367-74.
50. Rodriguez BJ, Jesse S, Baddorf AP, Kim SH, Kalinin SV. Controlling polarization dynamics in a liquid environment: from localized to macroscopic switching in ferroelectrics. Phys Rev Lett 2007;98:247603.
51. Sobhan M, Xu Q, Yang Q, Anariba F, Wu P. Tunable atomic termination in nano-necklace BiFeO3. Appl Phys Lett 2014;104:051606.
52. Tănase LC, Abramiuc LE, Popescu DG, et al. Polarization orientation in lead zirconate titanate (001) thin films driven by the interface with the substrate. Phys Rev Applied 2018;10:034020.
53. Pintilie I, Trinca L, Trupina L, Pasuk I, Pintilie L. Relation between domain structure and pyroelectric response in as-grown epitaxial Pb(Zr0.2Ti0.8)O3 thin films on substrates with different resistivity. Mater Res Bull 2017;93:201-7.
54. Ju L, Bie M, Shang J, Tang X, Kou L. Janus transition metal dichalcogenides: a superior platform for photocatalytic water splitting. J Phys Mater 2020;3:022004.
55. Ju L, Liu P, Yang Y, Shi L, Yang G, Sun L. Tuning the photocatalytic water-splitting performance with the adjustment of diameter in an armchair WSSe nanotube. J Energ Chem 2021;61:228-35.
56. Kakekhani A, Ismail-beigi S. Ferroelectric-based catalysis: switchable surface chemistry. ACS Catal 2015;5:4537-45.
57. Kakekhani A, Ismail-beigi S. Ferroelectric oxide surface chemistry: water splitting via pyroelectricity. J Mater Chem A 2016;4:5235-46.
58. Zhang Y, Kumar S, Marken F, et al. Pyro-electrolytic water splitting for hydrogen generation. Nano Energy 2019;58:183-91.
59. Xie M, Dunn S, Boulbar EL, Bowen CR. Pyroelectric energy harvesting for water splitting. Int J Hydrogen Energy 2017;42:23437-45.
60. You H, Jia Y, Wu Z, Wang F, Huang H, Wang Y. Room-temperature pyro-catalytic hydrogen generation of 2D few-layer black phosphorene under cold-hot alternation. Nat Commun 2018;9:2889.
61. Xu X, Xiao L, Jia Y, et al. Pyro-catalytic hydrogen evolution by Ba0.7Sr0.3TiO3 nanoparticles: harvesting cold-hot alternation energy near room-temperature. Energy Environ Sci 2018;11:2198-207.
62. Thuy Phuong PT, Zhang Y, Gathercole N, et al. Demonstration of enhanced piezo-catalysis for hydrogen generation and water treatment at the ferroelectric curie temperature. iScience 2020;23:101095.
63. Kim HS. Computational design of a switchable heterostructure electrocatalyst based on a two-dimensional ferroelectric In2Se3 material for the hydrogen evolution reaction. J Mater Chem A 2021;9:11553-62.
64. Zhang L, Yang Z, Gong T, et al. Recent advances in emerging Janus two-dimensional materials: from fundamental physics to device applications. J Mater Chem A 2020;8:8813-30.
65. Sante D, Stroppa A, Jain P, Picozzi S. Tuning the ferroelectric polarization in a multiferroic metal-organic framework. J Am Chem Soc 2013;135:18126-30.
66. Rinaldi C, Varotto S, Asa M, et al. Ferroelectric control of the spin texture in GeTe. Nano Lett 2018;18:2751-8.
67. Stroppa A, Di Sante D, Barone P, et al. Tunable ferroelectric polarization and its interplay with spin-orbit coupling in tin iodide perovskites. Nat Commun 2014;5:5900.
68. Jain P, Stroppa A, Nabok D, et al. Switchable electric polarization and ferroelectric domains in a metal-organic-framework. npj Quant Mater 2016;1:16012.
69. Zhao P, Ma Y, Lv X, Li M, Huang B, Dai Y. Two-dimensional III2-VI3 materials: promising photocatalysts for overall water splitting under infrared light spectrum. Nano Energy 2018;51:533-8.
70. Li X, Li Z, Yang J. Proposed photosynthesis method for producing hydrogen from dissociated water molecules using incident near-infrared light. Phys Rev Lett 2014;112:018301.
71. Ju L, Shang J, Tang X, Kou L. Tunable photocatalytic water splitting by the ferroelectric switch in a 2D AgBiP2Se6 monolayer. J Am Chem Soc 2020;142:1492-500.
72. Ortiz N, Zoellner B, Kumar V, et al. Composite ferroelectric and plasmonic particles for hot charge separation and photocatalytic hydrogen gas production. ACS Appl Energy Mater 2018;1:4606-16.
73. Gao Y, de Jubera AMS, Mariñas BJ, Moore JS. Nanofiltration membranes with modified active layer using aromatic polyamide dendrimers. Adv Funct Mater 2013;23:598-607.
74. Wu C, Zhang S, Yang D, Jian X. Preparation, characterization and application of a novel thermal stable composite nanofiltration membrane. J Membrane Sci 2009;326:429-34.
75. Pu L, Xu Y, Xia Q, et al. Ferroelectric membrane for water purification with arsenic as model pollutant. Chem Eng J 2021;403:126426.
76. Pan M, Liu S, Chew JW. Unlocking the high redox activity of MoS2 on dual-doped graphene as a superior piezocatalyst. Nano Energy 2020;68:104366.
77. Chang J, Lin H. Exploitation of piezoelectricity for enhancing photocatalytic activity of ZnO nanowires. Mater Lett 2014;132:134-7.
78. Feng Y, Ling L, Wang Y, et al. Engineering spherical lead zirconate titanate to explore the essence of piezo-catalysis. Nano Energy 2017;40:481-6.
79. Lin J, Tsao Y, Wu M, Chou T, Lin Z, Wu JM. Single- and few-layers MoS2 nanocomposite as piezo-catalyst in dark and self-powered active sensor. Nano Energy 2017;31:575-81.
80. Wu J, Qin N, Bao D. Effective enhancement of piezocatalytic activity of BaTiO3 nanowires under ultrasonic vibration. Nano Energy 2018;45:44-51.
81. Singh S, Khare N. Coupling of piezoelectric, semiconducting and photoexcitation properties in NaNbO3 nanostructures for controlling electrical transport: realizing an efficient piezo-photoanode and piezo-photocatalyst. Nano Energy 2017;38:335-41.
82. Liu X, Xiao L, Zhang Y, Sun H. Significantly enhanced piezo-photocatalytic capability in BaTiO3 nanowires for degrading organic dye. J Materiomics 2020;6:256-62.
83. Zhang Z, Zou C, Yang S, Yang Z, Yang Y. Ferroelectric polarization effect promoting the bulk charge separation for enhance the efficiency of photocatalytic degradation. Chem Eng J 2021;410:128430.
84. Fu Q, Wang X, Li C, et al. Enhanced photocatalytic activity on polarized ferroelectric KNbO3. RSC Adv 2016;6:108883-7.
85. Chen Y, Li CW, Kanan MW. Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles. J Am Chem Soc 2012;134:19969-72.
86. Kuhl KP, Hatsukade T, Cave ER, Abram DN, Kibsgaard J, Jaramillo TF. Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces. J Am Chem Soc 2014;136:14107-13.
87. Savéant JM. Molecular catalysis of electrochemical reactions. Mechanistic aspects. Chem Rev 2008;108:2348-78.
88. Kondratenko EV, Mul G, Baltrusaitis J, Larrazábal GO, Pérez-ramÃrez J. Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes. Energy Environ Sci 2013;6:3112.
89. Qiao J, Liu Y, Hong F, Zhang J. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chem Soc Rev 2014;43:631-75.
90. Olah GA, Prakash GK, Goeppert A. Anthropogenic chemical carbon cycle for a sustainable future. J Am Chem Soc 2011;133:12881-98.
91. Han N, Wang Y, Yang H, et al. Ultrathin bismuth nanosheets from in situ topotactic transformation for selective electrocatalytic CO2 reduction to formate. Nat Commun 2018;9:1320.
92. Zhang Y, Zhang X, Ling Y, Li F, Bond AM, Zhang J. Controllable synthesis of few-layer bismuth subcarbonate by electrochemical exfoliation for enhanced CO2 reduction performance. Angew Chem Int Ed Engl 2018;57:13283-7.
93. Li F, Chen L, Knowles GP, MacFarlane DR, Zhang J. Hierarchical mesoporous SnO2 nanosheets on carbon cloth: a robust and flexible electrocatalyst for CO2 reduction with high efficiency and selectivity. Angew Chem Int Ed Engl 2017;56:505-9.
94. Guo SX, Li F, Chen L, MacFarlane DR, Zhang J. Polyoxometalate-promoted electrocatalytic CO2 reduction at nanostructured silver in dimethylformamide. ACS Appl Mater Interfaces 2018;10:12690-7.
95. Wang H, Jia J, Song P, et al. Efficient electrocatalytic reduction of CO2 by nitrogen-doped nanoporous carbon/carbon nanotube membranes: a step towards the electrochemical CO2 refinery. Angew Chem Int Ed Engl 2017;56:7847-52.
96. Lin S, Diercks CS, Zhang YB, et al. Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water. Science 2015;349:1208-13.
97. Zhang X, Sun X, Guo S, Bond AM, Zhang J. Formation of lattice-dislocated bismuth nanowires on copper foam for enhanced electrocatalytic CO2 reduction at low overpotential. Energy Environ Sci 2019;12:1334-40.
98. Lee SY, Jung H, Kim NK, Oh HS, Min BK, Hwang YJ. Mixed copper states in anodized Cu electrocatalyst for stable and selective ethylene production from CO2 reduction. J Am Chem Soc 2018;140:8681-9.
99. Ju L, Tan X, Mao X, et al. Controllable CO2 electrocatalytic reduction via ferroelectric switching on single atom anchored In2Se3 monolayer. Nat Commun 2021;12:5128.
100. Song W, Salvador PA, Rohrer GS. Influence of the magnitude of ferroelectric domain polarization on the photochemical reactivity of BaTiO3. ACS Appl Mater Interfaces 2018;10:41450-7.
101. Beheshtian J, Peyghan AA, Noei M. Sensing behavior of Al and Si doped BC3 graphenes to formaldehyde. Sensor Actuat B-Chem 2013;181:829-34.
102. Zhang YH, Chen YB, Zhou KG, et al. Improving gas sensing properties of graphene by introducing dopants and defects: a first-principles study. Nanotechnology 2009;20:185504.
103. Ma D, Ju W, Li T, et al. Formaldehyde molecule adsorption on the doped monolayer MoS2: a first-principles study. Appl Surf Sci 2016;371:180-8.
104. Weigelt S, Busse C, Bombis C, et al. Covalent interlinking of an aldehyde and an amine on a Au(111) surface in ultrahigh vacuum. Angew Chem 2007;119:9387-90.
105. Kokalj A. Formation and structure of inhibitive molecular film of imidazole on iron surface. Corros Sci 2013;68:195-203.
106. Li J, Nagaraj B, Liang H, Cao W, Lee CH, Ramesh R. Ultrafast polarization switching in thin-film ferroelectrics. Appl Phys Lett 2004;84:1174-6.
107. Fahy S, Merlin R. Reversal of ferroelectric domains by ultrashort optical pulses. Phys Rev Lett 1994;73:1122-5.
108. Herchig R, Chang C, Mani BK, Ponomareva I. An unusual route to polarization reversal in ferroelectric ultrathin nanowires. Appl Phys Lett 2014;105:012907.
109. Qi T, Shin YH, Yeh KL, Nelson KA, Rappe AM. Collective coherent control: synchronization of polarization in ferroelectric PbTiO3 by shaped THz fields. Phys Rev Lett 2009;102:247603.
110. Lian C, Ali ZA, Kwon H, Wong BM. Indirect but efficient: laser-excited electrons can drive ultrafast polarization switching in ferroelectric materials. J Phys Chem Lett 2019;10:3402-7.
111. Abalmasov VA. Ultrafast reversal of the ferroelectric polarization by a midinfrared pulse. Phys Rev B 2020;101:014102.
112. Ren X, Wu T, Sun Y, et al. Spin-polarized oxygen evolution reaction under magnetic field. Nat Commun 2021;12:2608.
113. Yan J, Wang Y, Zhang Y, Xia S, Yu J, Ding B. Direct magnetic reinforcement of electrocatalytic ORR/OER with electromagnetic induction of magnetic catalysts. Adv Mater 2021;33:e2007525.
114. Hu JM, Chen LQ, Nan CW. Multiferroic heterostructures integrating ferroelectric and magnetic materials. Adv Mater 2016;28:15-39.
115. Hu J, Eom C. Magnetic-field control of ionic bonds on ferroelectric surfaces. Appl Phys Lett 2019;114:091601.
116. Wang ZW, Shu DJ. Intrinsic interaction between in-plane ferroelectric polarization and surface adsorption. Phys Chem Chem Phys 2019;21:18680-5.
117. Nong HN, Falling LJ, Bergmann A, et al. Key role of chemistry versus bias in electrocatalytic oxygen evolution. Nature 2020;587:408-13.
118. Bian F, Wu X, Li S, et al. Role of transport polarization in electrocatalysis: a case study of the Ni-cluster/Graphene interface. J Mater Sci Technol 2021;92:120-8.