REFERENCES

1. International Energy Agency. Global Energy Review 2025. https://www.iea.org/reports/global-energy-review-2025. (accessed 9 Dec 2025).

2. Qin, B.; Kanatzidis, M. G.; Zhao, L. D. The development and impact of tin selenide on thermoelectrics. Science. 2024, 386, eadp2444.

3. Liu, S.; Bai, S.; Wen, Y.; et al. Quadruple-band synglisis enables high thermoelectric efficiency in earth-abundant tin sulfide crystals. Science. 2025, 387, 202-8.

4. Hu, L.; Luo, Y.; Fang, Y. W.; et al. High thermoelectric performance through crystal symmetry enhancement in triply doped diamondoid compound Cu2SnSe3. Adv. Energy. Mater. 2021, 11, 2100661.

5. Hu, L.; Fang, Y. W.; Qin, F.; et al. High thermoelectric performance enabled by convergence of nested conduction bands in Pb7Bi4Se13 with low thermal conductivity. Nat. Commun. 2021, 12, 4793.

6. Wang, Y.; Zhong, C.; Zhang, J.; et al. Machine learning for predictive design and optimization of high-performance thermoelectric materials: a review. J. Mater. Inf. 2025, 5, 41.

7. Sharma, S.; Kumar, S.; Schwingenschlögl, U. Arsenene and antimonene: two-dimensional materials with high thermoelectric figures of merit. Phys. Rev. Appl. 2017, 8, 044013.

8. Zhao, L. D.; Tan, G.; Hao, S.; et al. Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe. Science. 2016, 351, 141-4.

9. Xiao, Y.; Wu, H.; Cui, J.; et al. Realizing high performance n-type PbTe by synergistically optimizing effective mass and carrier mobility and suppressing bipolar thermal conductivity. Energy. Environ. Sci. 2018, 11, 2486-95.

10. Zheng, Y.; Slade, T. J.; Hu, L.; et al. Defect engineering in thermoelectric materials: what have we learned? Chem. Soc. Rev. 2021, 50, 9022-54.

11. Wu, C.; Shi, X. L.; Wang, L.; et al. Defect engineering advances thermoelectric materials. ACS. Nano. 2024, 18, 31660-712.

12. Zhang, Y.; Li, Z.; Singh, S.; et al. Defect-engineering-stabilized AgSbTe2 with high thermoelectric performance. Adv. Mater. 2023, 35, 2208994.

13. Fu, C. L.; Cheng, M.; Hung, N. T.; et al. AI-driven defect engineering for advanced thermoelectric materials. Adv. Mater. 2025, 37, 2505642.

14. Moshwan, R.; Shi, X. L.; Liu, W. D.; Liu, J.; Chen, Z. G. Entropy engineering: an innovative strategy for designing high-performance thermoelectric materials and devices. Nano. Today. 2024, 58, 102475.

15. Wu, H.; Shi, X. L.; Li, M.; et al. Sandwich engineering advances ductile thermoelectrics. Adv. Mater. 2025, 37, 2503020.

16. Su, L.; Wang, D.; Wang, S.; et al. High thermoelectric performance realized through manipulating layered phonon-electron decoupling. Science. 2022, 375, 1385-9.

17. Wang, S. J.; Panhans, M.; Lashkov, I.; et al. Highly efficient modulation doping: a path toward superior organic thermoelectric devices. Sci. Adv. 2022, 8, eabl9264.

18. Qin, F.; Hu, L.; Zhu, Y.; et al. Integrating abnormal thermal expansion and ultralow thermal conductivity into (Cd,Ni)2Re2O7 via synergy of local structure distortion and soft acoustic phonons. Acta. Mater. 2024, 264, 119544.

19. Liu, D.; Qin, B.; Zhao, L. D. SnSe/SnS: multifunctions beyond thermoelectricity. Mater. Lab. 2022, 1, 220006.

20. Tang, S.; Ai, P.; Bai, S.; et al. Weak interatomic interactions induced low lattice thermal conductivity in 2D/2D PbSe/SnSe vdW heterostructure. Mater. Today. Phys. 2024, 43, 101398.

21. Gao, Z.; Liu, G.; Ren, J. High thermoelectric performance in two-dimensional tellurium: an ab initio study. ACS. Appl. Mater. Interfaces. 2018, 10, 40702-9.

22. Patel, A.; Singh, D.; Sonvane, Y.; Thakor, P. B.; Ahuja, R. High thermoelectric performance in two-dimensional Janus monolayer material WS-X (X = Se and Te). ACS. Appl. Mater. Interfaces. 2020, 12, 46212-9.

23. Lee, M. J.; Ahn, J. H.; Sung, J. H.; et al. Thermoelectric materials by using two-dimensional materials with negative correlation between electrical and thermal conductivity. Nat. Commun. 2016, 7, 12011.

24. Sidike, A.; Zhang, B.; Dong, J.; Guo, G.; Duan, H.; Long, M. Realization of high thermoelectric performance of black phosphorus/black arsenic hybrid heterojunction nanoscale devices by interface engineering. Phys. B. Condens. Matter. 2024, 673, 415357.

25. Zhou, Y.; Wang, H. Enhanced in-plane thermoelectric properties achieved through the vertical van der Waals stacking of black phosphorus and Ti2C. Int. J. Heat. Mass. Transf. 2023, 217, 124670.

26. Wu, J.; Liu, Y.; Liu, Y.; et al. Large enhancement of thermoelectric performance in MoS2/h-BN heterostructure due to vacancy-induced band hybridization. Proc. Natl. Acad. Sci. U. S. A. 2020, 117, 13929-36.

27. Tang, S.; Bai, S.; Wu, M.; et al. Honeycomb-like puckered PbSe with wide bandgap as promising thermoelectric material: a first-principles prediction. Mater. Today. Energy. 2022, 23, 100914.

28. Tang, S.; Wu, M.; Bai, S.; Luo, D.; Zhang, J.; Yang, S. Honeycomb-like puckered PbTe monolayer: a promising n-type thermoelectric material with ultralow lattice thermal conductivity. J. Alloys. Compd. 2022, 907, 164439.

29. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 1996, 54, 11169.

30. Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15-50.

31. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B. 1994, 50, 17953.

32. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 1999, 59, 1758.

33. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865.

34. Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B. 1976, 13, 5188.

35. Heyd, J.; Scuseria, G. E.; Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 2003, 118, 8207-15.

36. Wang, R. Q.; Cao, T.; Lei, T. M.; Zhang, X.; Fang, Y. W. Control of magnetic transition, metal-semiconductor transition, and magnetic anisotropy in noncentrosymmetric monolayer Cr2Ge2Se3Te3. Appl. Phys. Lett. 2025, 127, 092402.

37. Cerqueira, T. F. T.; Fang, Y. W.; Errea, I.; Sanna, A.; Marques, M. A. L. Searching materials space for hydride superconductors at ambient pressure. Adv. Funct. Mater. 2024, 34, 2404043.

38. Deringer, V. L.; Tchougréeff, A. L.; Dronskowski, R. Crystal Orbital Hamilton Population (COHP) analysis as projected from plane-wave basis sets. J. Phys. Chem. A. 2011, 115, 5461-6.

39. Pöhls, J. H.; Luo, Z.; Aydemir, U.; et al. First-principles calculations and experimental studies of XYZ2 thermoelectric compounds: detailed analysis of van der Waals interactions. J. Mater. Chem. A. 2018, 6, 19502-19.

40. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

41. Shapeev, A. V. Moment tensor potentials: a class of systematically improvable interatomic potentials. Multiscale. Model. Simul. 2016, 14, 1153-73.

42. Novikov, I. S.; Gubaev, K.; Podryabinkin, E. V.; Shapeev, A. V. The MLIP package: moment tensor potentials with MPI and active learning. Mach. Learn. Sci. Technol. 2020, 2, 025002.

43. Togo, A.; Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 2015, 108, 1-5.

44. Han, Z.; Yang, X.; Li, W.; Feng, T.; Ruan, X. FourPhonon: an extension module to ShengBTE for computing four-phonon scattering rates and thermal conductivity. Comput. Phys. Commun. 2022, 270, 108179.

45. Mortazavi, B.; Podryabinkin, E. V.; Novikov, I. S.; Rabczuk, T.; Zhuang, X.; Shapeev, A. V. Accelerating first-principles estimation of thermal conductivity by machine-learning interatomic potentials: a MTP/ShengBTE solution. Comput. Phys. Commun. 2021, 258, 107583.

46. Li, W.; Carrete, J.; Katcho, N. A.; Mingo, N. ShengBTE: a solver of the Boltzmann transport equation for phonons. Comput. Phys. Commun. 2014, 185, 1747-58.

47. Chen, X. K.; Zhang, E. M.; Wu, D.; Chen, K. Q. Strain-induced medium-temperature thermoelectric performance of Cu4TiSe4: the role of four-phonon scattering. Phys. Rev. Appl. 2023, 19, 044052.

48. Madsen, G. K. H;. Singh. D. J. BoltzTraP. A code for calculating band-structure dependent quantities. Comput. Phys. Commun. 2006, 175, 67-71.

49. Qian, G. L.; Xie, Q.; Liang, Q.; Luo, X. Y.; Wang, Y. X. Electronic properties and photocatalytic water splitting with high solar-to-hydrogen efficiency in a hBNC/Janus WSSe heterojunction: first-principles calculations. Phys. Rev. B. 2023, 107, 155306.

50. Lü, J.; Xu, F.; Zhou, Y.; Mo, X.; Ouyang, Y.; Tao, X. Four-phonon enhanced the thermoelectric properties of ScSX (X = Cl, Br, and I) monolayers. ACS. Appl. Mater. Interfaces. 2024, 16, 24734-47.

51. Savin, A.; Jepsen, O.; Flad, J.; Andersen, O. K.; Preuss, H.; von Schnering, H. G. Electron localization in solid-state structures of the elements: the diamond structure. Angew. Chem. Int. Ed. 1992, 31, 187-8.

52. Becke, A. D.; Edgecombe, K. E. A simple measure of electron localization in atomic and molecular systems. J. Chem. Phys. 1990, 92, 5397-403.

53. Burdett, J. K.; McCormick, T. A. Electron localization in molecules and solids: the meaning of ELF. J. Phys. Chem. A. 1998, 102, 6366-72.

54. Fang, Y. W.; Chen, H. Design of a multifunctional polar metal via first-principles high-throughput structure screening. Commun. Mater. 2020, 1, 1.

55. Fang, Y. W.; Fisher, C. A. J.; Kuwabara, A.; et al. Lattice dynamics and ferroelectric properties of the nitride perovskite LaWN3. Phys. Rev. B. 2017, 95, 014111.

56. Alizadeh, Z.; Fang, Y. W.; Errea, I.; Mohammadizadeh, M. R. From superconductivity to non-superconductivity in LiPdH: a first principles approach. Phys. Rev. B. 2025, 112, 104308.

57. Li, Y.; Li, J.; Tian, J.; Liu, H.; Shi, J. A first-principles study of 2D Bi-based BiOClBr, BiOClI, and BiOBrI monolayers with ultralow lattice thermal conductivities for thermoelectric application. ACS. Appl. Nano. Mater. 2024, 7, 15086-95.

58. Lajevardipour, A.; Neek-Amal, M.; Peeters, F. M. Thermomechanical properties of graphene: valence force field model approach. J. Phys. Condens. Matter. 2012, 24, 175303.

59. Hess, P. Relationships between the elastic and fracture properties of boronitrene and molybdenum disulfide and those of graphene. Nanotechnology. 2017, 28, 064002.

60. Jain, A.; McGaughey, A. J. H. Strongly anisotropic in-plane thermal transport in single-layer black phosphorene. Sci. Rep. 2015, 5, 8501.

61. Hossain, M. T.; Rahman, M. A. A first principle study of the structural, electronic, and temperature-dependent thermodynamic properties of graphene/MoS2 heterostructure. J. Mol. Model. 2020, 26, 40.

62. Xiang, F.; Tan, R.; Xie, Q.; Zhang, K. High performance photocatalytic water splitting in two-dimensional BN/Janus SnSSe heterojunctions: ab initio study. Phys. Chem. Chem. Phys. 2025, 27, 7965-74.

63. Ding, J.; Liu, C.; Xi, L.; Xi, J.; Yang, J. Thermoelectric transport properties in chalcogenides ZnX (X=S, Se): from the role of electron-phonon couplings. J. Materiomics. 2021, 7, 310-9.

64. Chaudhuri, S.; Bhattacharya, A.; Das, A. K.; Das, G. P.; Dev, B. N. Understanding the role of four-phonon scattering in the lattice thermal transport of monolayer MoS2. Phys. Rev. B. 2024, 109, 235424.

65. Christensen, M.; Abrahamsen, A. B.; Christensen, N. B.; et al. Avoided crossing of rattler modes in thermoelectric materials. Nat. Mater. 2008, 7, 811-5.

66. Hu, J.; Zhu, J.; Dong, X.; et al. Breaking the minimum limit of thermal conductivity of Mg3Sb2 thermoelectric mediated by chemical alloying induced lattice instability. Small. 2023, 19, 2301382.

67. Xie, Q. Y.; Ma, J. J.; Liu, Q. Y.; et al. Low thermal conductivity and high performance anisotropic thermoelectric properties of XSe (X = Cu, Ag, Au) monolayers. Phys. Chem. Chem. Phys. 2022, 24, 7303-10.

68. Zhu, Y.; Ye, T.; Wen, H.; et al. Quasi-2D phonon transport in diamond nanosheet. Adv. Funct. Mater. 2024, 34, 2407333.

69. Lindsay, L.; Broido, D. A.; Reinecke, T. L. Ab initio thermal transport in compound semiconductors. Phys. Rev. B. 2013, 87, 165201.

70. Xie, Q. Y.; Xiao, F.; Zhang, K. W.; Wang, B. T. Anharmonic phonon self-energy and anomalous thermal transport in the quaternary compound BaAg2SnSe4. Phys. Rev. B. 2024, 110, 045203.

71. Jian, M.; Feng, Z.; Xu, Y.; Yan, Y.; Zhao, G.; Singh, D. J. Ultralow lattice thermal conductivity induced by anharmonic cation rattling and significant role of intrinsic point defects in TlBiS2. Phys. Rev. B. 2023, 107, 245201.

72. Xiao, Y.; Zhao, Y.; Ni, J.; Meng, S.; Dai, Z. Phonon hardening and the effect of phonon transport in cubic antiperovskites A3FB (A = Li, Na; B = Se, Te) induced by quartic anharmonicity. Mater. Today. Commun. 2023, 35, 105450.

73. Minhas, H.; Das, S.; Pathak, B. Importance of four-phonon interactions in lattice thermal conductivity and thermoelectrics: a case study. ACS. Appl. Energy. Mater. 2023, 6, 7305-16.

74. Feng, Z.; Fu, Y.; Yan, Y.; Zhang, Y.; Singh, D. J. Zintl chemistry leading to ultralow thermal conductivity, semiconducting behavior, and high thermoelectric performance of hexagonal KBaBi. Phys. Rev. B. 2021, 103, 224101.

75. Yue, T.; Zhao, Y.; Ni, J.; Meng, S.; Dai, Z. Strong quartic anharmonicity, ultralow thermal conductivity, high band degeneracy and good thermoelectric performance in Na2TlSb. npj. Comput. Mater. 2023, 9, 17.

76. Bai, S.; Zhang, J.; Wu, M.; et al. Theoretical prediction of thermoelectric performance for layered LaAgOX (X = S, Se) materials in consideration of the four-phonon and multiple carrier scattering processes. Small. Methods. 2023, 7, 2201368.

77. Feng, T.; Lindsay, L.; Ruan, X. Four-phonon scattering significantly reduces intrinsic thermal conductivity of solids. Phys. Rev. B. 2017, 96, 161201.

78. Gao, Z.; Lv, M.; Liu, M.; et al. Novel layered As2Ge with a pentagonal structure for potential thermoelectrics. J. Mater. Chem. C. 2025, 13, 5762-70.

79. Peng, R.; Ma, Y.; He, Z.; Huang, B.; Kou, L.; Dai, Y. Single-layer Ag2S: a two-dimensional bidirectional auxetic semiconductor. Nano. Lett. 2019, 19, 1227-33.

80. Ganose, A. M.; Park, J.; Faghaninia, A.; Woods-Robinson, R.; Persson, K. A.; Jain, A. Efficient calculation of carrier scattering rates from first principles. Nat. Commun. 2021, 12, 2222.

81. Nautiyal, H.; Scardi, P. Thermoelectric properties and thermal transport in two-dimensional GaInSe3 and GaInTe3 monolayers: a first-principles study. J. Appl. Phys. 2024, 135, 174301.

82. Feng, S.; Qi, H.; Hu, W.; Zu, X.; Xiao, H. A theoretical prediction of thermoelectrical properties for novel two-dimensional monolayer ZrSn2N4. J. Mater. Chem. A. 2024, 12, 13474-87.

83. Pandit, A.; Hamad, B. Thermoelectric and lattice dynamics properties of layered MX (M = Sn, Pb; X = S, Te) compounds. Appl. Surf. Sci. 2021, 538, 147911.

84. Stojanovic, N.; Maithripala, D. H. S.; Berg, J. M.; Holtz, M. Thermal conductivity in metallic nanostructures at high temperature: electrons, phonons, and the Wiedemann-Franz law. Phys. Rev. B. 2010, 82, 075418.

85. Zhou, W. X.; Wu, C. W.; Cao, H. R.; Zeng, Y. J.; Xie, G.; Zhang, G. Abnormal thermal conductivity increase in β-Ga2O3 by an unconventional bonding mechanism using machine-learning potential. Mater. Today. Phys. 2025, 52, 101677.

86. Chen, X. K.; Zhu, J.; Qi, M.; Jia, P. Z.; Xie, Z. X. Anomalous strain-dependent thermoelectric properties of cubic stuffed-diamond LiCu3TiQ4 (Q = S, Se). Phys. Rev. Appl. 2025, 23, 034085.

Journal of Materials Informatics
ISSN 2770-372X (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/