REFERENCES

1. Zhang, F.; Chen, P.; Du, J. H.; Wang, P. F.; Li, X. W. Optimizing the microstructure and mechanical properties of Fe-30.5Mn–8Al-1.0C lightweight austenitic steel through thermomechanical treatment. Mater. Sci. Eng. A. 2024, 903, 146674.

2. Lin, F.; Sitko, M.; Madej, L.; Delannay, L. Non-uniform grain boundary migration during static recrystallization: a cellular automaton study. Metall. Mater. Trans. A. 2022, 53, 1630-44.

3. Liu, R.; Zhang, Z.; Zhou, G.; Jia, Z.; Li, D.; Wu, P. A polycrystal plasticity-cellular automaton integrated modeling method for continuous dynamic recrystallization and its application to AA2196 alloy. Int. J. Plast. 2024, 182, 104127.

4. Hesselbarth, H. W.; Göbel, I. R. Simulation of recrystallization by cellular automata. Acta. Metall. Mater. 1991, 39, 2135-43.

5. Zhi, Y.; Jiang, Y.; Ke, D.; Hu, X.; Liu, X. Review on cellular automata for microstructure simulation of metallic materials. Materials 2024, 17, 1370.

6. Du, J.; Liu, Y.; Zhao, C.; et al. Towards mechanical performance paradox and behind thermo-kinetic origins of aluminum alloys with additional solutes (X = Mg, Cu and Si) from atomistic simulations. J. Mater. Inf. 2025, 5, 10.

7. Papanikolaou, S.; Tzimas, M.; Reid, A. C. E.; Langer, S. A. Spatial strain correlations, machine learning, and deformation history in crystal plasticity. Phys. Rev. E. 2019, 99, 053003.

8. Eghtesad, A.; Luo, Q.; Shang, S.; et al. Machine learning-enabled identification of micromechanical stress and strain hotspots predicted via dislocation density-based crystal plasticity simulations. Int. J. Plast. 2023, 166, 103646.

9. Jiang, M.; Hu, X.; Xing, C.; et al. Fast parameter optimization for high-fidelity crystal plasticity simulation using active learning. J. Mater. Inf. 2024, 4, 22.

10. Muhammad, W.; Brahme, A. P.; Ibragimova, O.; Kang, J.; Inal, K. A machine learning framework to predict local strain distribution and the evolution of plastic anisotropy & fracture in additively manufactured alloys. Int. J. Plast. 2021, 136, 102867.

11. Riyad, I. A.; Clausen, B.; Savage, D. J.; Jeong, Y.; Brown, D. W.; Knezevic, M. Modeling deformation, recovery, and recrystallization of tantalum using a higher order elasto-viscoplastic self-consistent model. J. Mech. Phys. Solids. 2025, 194, 105925.

12. Iguchi, K.; Ogawa, T.; Sun, F.; Adachi, Y. Simulation-aided analysis of ferrite recrystallization behavior of pure iron with different dislocation characters. J. Mater. Res. Technol. 2023, 24, 6558-66.

13. Raabe, D.; Becker, R. C. Coupling of a crystal plasticity finite-element model with a probabilistic cellular automaton for simulating primary static recrystallization in aluminium. Modelling. Simul. Mater. Sci. Eng. 2000, 8, 445.

14. Li, H.; Sun, X.; Yang, H. A three-dimensional cellular automata-crystal plasticity finite element model for predicting the multiscale interaction among heterogeneous deformation, DRX microstructural evolution and mechanical responses in titanium alloys. Int. J. Plast. 2016, 87, 154-80.

15. Sitko, M.; Chao, Q.; Wang, J.; Perzynski, K.; Muszka, K.; Madej, L. A parallel version of the cellular automata static recrystallization model dedicated for high performance computing platforms - development and verification. Comput. Mater. Sci. 2020, 172, 109283.

16. Hashemi, S.; Kalidindi, S. R. A machine learning framework for the temporal evolution of microstructure during static recrystallization of polycrystalline materials simulated by cellular automaton. Comput. Mater. Sci. 2021, 188, 110132.

17. Chen, F.; Zhu, H.; Zhang, H.; Cui, Z. Mesoscale modeling of dynamic recrystallization: multilevel cellular automaton simulation framework. Metall. Mater. Trans. A. 2020, 51, 1286-303.

18. Xu, J.; He, Q.; Jin, X.; et al. A 3D cellular automaton with inhomogeneous nucleation for simulating dynamic recrystallization of low-alloy steel with mixed-grain microstructure. J. Mater. Process. Technol. 2023, 322, 118171.

19. Zecevic, M.; Knezevic, M.; Mcwilliams, B.; Lebensohn, R. A. Modeling of the thermo-mechanical response and texture evolution of WE43 Mg alloy in the dynamic recrystallization regime using a viscoplastic self-consistent formulation. Int. J. Plast. 2020, 130, 102705.

20. Dantin, M. J. Thermomechanical modeling predictions of the directed energy deposition process using a dislocation mechanics based internal state variable model. Mississippi State University, 2021. https://scholarsjunction.msstate.edu/cgi/viewcontent.cgi?article=6244&context=td. (accessed 2025-11-24).

21. Zhu, Y.; Cao, Y.; Ma, J.; et al. Cryogenic deformation tailors the dislocation accumulation mode to modify grain boundary character distribution of Incoloy 925. Mater. Charact. 2023, 202, 112995.

22. Zhang, L.; Liu, L.; Guo, S.; Pan, Q.; Lu, L. Microstructure and evolution of gradient dislocation cells in multi-principal element alloy subjected to cyclic torsion. Acta. Mater. 2024, 275, 120059.

23. Zhang, X.; Zhao, J.; Kang, G.; Zaiser, M. Geometrically necessary dislocations and related kinematic hardening in gradient grained materials: a nonlocal crystal plasticity study. Int. J. Plast. 2023, 163, 103553.

24. Abuzaid, W. Z.; Sangid, M. D.; Carroll, J. D.; Sehitoglu, H.; Lambros, J. Slip transfer and plastic strain accumulation across grain boundaries in Hastelloy X. J. Mech. Phys. Solids. 2012, 60, 1201-20.

25. Ma, X.; Huang, C.; Moering, J.; et al. Mechanical properties of copper/bronze laminates: role of interfaces. Acta. Mater. 2016, 116, 43-52.

26. Zaitsev, D. A. A generalized neighborhood for cellular automata. Theor. Comput. Sci. 2017, 666, 21-35.

27. Goetz, R.; Seetharaman, V. Modeling dynamic recrystallization using cellular automata. Scr. Mater. 1998, 38, 405-13.

28. Li, J.; Wu, Y.; Zhang, H.; Zhang, X. Study on the dynamic recrystallization mechanisms tailored by dislocation substructures of a coarse grained Co-free nickel-based superalloy. Mater. Charact. 2023, 201, 112961.

29. Verdier, M.; Brechet, Y.; Guyot, P. Recovery of AlMg alloys: flow stress and strain-hardening properties. Acta. Mater. 1998, 47, 127-34.

30. Asgharzadeh, A.; Nazari Tiji, S. A.; Park, T.; Pourboghrat, F. Prediction of softening kinetics and recrystallization texture in non-isothermally annealed bulged tubes using CPFEM and CA models. Mater. Sci. Eng. A. 2022, 832, 142308.

31. Yoshie, A.; Fujita, T.; Fujioka, M.; Okamoto, K.; Morikawa, H. Formulation of the decrease in dislocation density of deformed austenite due to static recovery and recrystallization. ISIJ. Int. 1996, 36, 474-80.

32. Alaneme, K. K.; Okotete, E. A. Recrystallization mechanisms and microstructure development in emerging metallic materials: a review. J. Sci. Adv. Mater. Devices. 2019, 4, 19-33.

33. Asgharzadeh, A.; Nazari Tiji, S. A.; Park, T.; Kim, J. H.; Pourboghrat, F. Cellular automata modeling of the kinetics of static recrystallization during the post-hydroforming annealing of steel tube. J. Mater. Sci. 2020, 55, 7938-57.

34. Zhu, Y.; Cao, Y.; Yuan, F.; et al. On the modified kinetics model describing the dynamic recrystallization behavior during hot deformation of Incoloy 925. J. Mater. Res. Technol. 2023, 24, 5702-12.

35. Wan, Z.; Shen, J.; Wang, T.; et al. Effect of hot deformation parameters on the dissolution of γ′ precipitates for As-cast Ni-based superalloys. J. Mater. Eng. Perform. 2022, 31, 1594-606.

36. Chen, Y.; Han, J.; Deng, H.; et al. Revealing grain boundary kinetics in three-dimensional space. Acta. Mater. 2024, 268, 119717.

37. Zheng, C.; Xiao, N.; Li, D.; Li, Y. Mesoscopic modeling of austenite static recrystallization in a low carbon steel using a coupled simulation method. Comput. Mater. Sci. 2009, 45, 568-75.

38. Kremeyer, K. Cellular automata investigations of binary solidification. J. Comput. Phys. 1998, 142, 243-63.

39. Liu, F.; Liu, Z.; Pei, X.; Hu, J.; Zhuang, Z. Modeling high temperature anneal hardening in Au submicron pillar by developing coupled dislocation glide-climb model. Int. J. Plast. 2017, 99, 102-19.

40. Hart-Rawung, T.; Buhl, J.; Horn, A.; Bambach, M.; Merklein, M. A unified model for isothermal and non-isothermal phase transformation in hot stamping of 22MnB5 steel. J. Mater. Process. Technol. 2023, 313, 117856.

41. Tutcuoglu, A.; Vidyasagar, A.; Bhattacharya, K.; Kochmann, D. Stochastic modeling of discontinuous dynamic recrystallization at finite strains in hcp metals. J. Mech. Phys. Solids. 2019, 122, 590-612.

42. Houria, M.; Matougui, N.; Mehdi, B.; Kherrouba, N.; Jahazi, M. Effect of plastic anisotropy on the kinetics of static softening in AA2024–T3 aluminum alloy. Met. Mater. Int. 2022, 28, 2042-58.

43. Wang, Q.; Jiang, B.; Tang, A.; et al. Unveiling annealing texture formation and static recrystallization kinetics of hot-rolled Mg-Al-Zn-Mn-Ca alloy. J. Mater. Sci. Technol. 2020, 43, 104-18.

Journal of Materials Informatics
ISSN 2770-372X (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/