REFERENCES

1. Dobrzański, L. A. Significance of materials science for the future development of societies. J. Mater. Process. Technol. 2006, 175, 133-48.

2. Fullwood, D. T.; Niezgoda, S. R.; Adams, B. L.; Kalidindi, S. R. Microstructure sensitive design for performance optimization. Prog. Mater. Sci. 2010, 55, 477-562.

3. Darolia, R. Development of strong, oxidation and corrosion resistant nickel-based superalloys: critical review of challenges, progress and prospects. Int. Mater. Rev. 2019, 64, 355-80.

4. Emmanuel, A.; Fayomi, O.; Akande, I. Aluminium alloys as advanced materials: a short communication. IOP. Conf. Ser. Mater. Sci. Eng. 2021, 1107, 012024.

5. Yeh, J.; Chen, S.; Lin, S.; et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 2004, 6, 299-303.

6. Wang, L.; Makhlouf, M.; Apelian, D. Aluminium die casting alloys: alloy composition, microstructure, and properties-performance relationships. Int. Mater. Rev. 1995, 40, 221-38.

7. Fu, H.; Zhang, H.; Wang, C.; Yong, W.; Xie, J. Recent progress in the machine learning-assisted rational design of alloys. Int. J. Miner. Metall. Mater. 2022, 29, 635-44.

8. Pilania, G. Machine learning in materials science: from explainable predictions to autonomous design. Comput. Mater. Sci. 2021, 193, 110360.

9. Mi, X.; Tian, L.; Tang, A.; et al. A reverse design model for high-performance and low-cost magnesium alloys by machine learning. Comput. Mater. Sci. 2022, 201, 110881.

10. Hu, M.; Tan, Q.; Knibbe, R.; et al. Recent applications of machine learning in alloy design: a review. Mat. Sci. Eng. R. 2023, 155, 100746.

11. Brown, P.; Zhuang, H. Quantum machine-learning phase prediction of high-entropy alloys. Mater. Today. 2023, 63, 18-31.

12. Pei, C.; Ma, Q.; Zhang, J.; et al. A novel model to predict oxidation behavior of superalloys based on machine learning. J. Mater. Sci. Technol. 2025, 235, 232-43.

13. Zhang, W.; Wang, X.; Ai, Y.; Zhang, W. Intelligent screening model for uranium alloy corrosion substitute alloys based on machine learning. Prog. Nat. Sci. 2025, 35, 622-30.

14. Su, J.; Chen, L.; Van, Petegem. S.; et al. Additive manufacturing metallurgy guided machine learning design of versatile alloys. Mater. Today. 2025, In Press.

15. Ma, Q.; Li, X.; Xin, R.; et al. Thermodynamic calculation and machine learning aided composition design of new nickel-based superalloys. J. Mater. Res. Technol. 2023, 26, 4168-78.

16. Jin, J.; Faraji, S.; Liu, B.; Liu, M. Comparative analysis of conventional machine learning and graph neural network models for perovskite property prediction. J. Phys. Chem. C. 2024, 128, 16672-83.

17. Vatter, J.; Mayer, R.; Jacobsen, H. The evolution of distributed systems for graph neural networks and their origin in graph processing and deep learning: a survey. ACM. Comput. Surv. 2024, 56, 1-37.

18. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436-44.

19. Leskovec, J.; Lang, K. J.; Dasgupta, A.; Mahoney, M. W. Community structure in large networks: natural cluster sizes and the absence of large well-defined clusters. Internet. Math. 2009, 6, 29-123.

20. Jamali, K.; Käll, L.; Zhang, R.; Brown, A.; Kimanius, D.; Scheres, S. H. W. Automated model building and protein identification in cryo-EM maps. Nature 2024, 628, 450-7.

21. Sherwood, A. V.; Rivera-Rangel, L. R.; Ryberg, L. A.; et al. Hepatitis C virus RNA is 5'-capped with flavin adenine dinucleotide. Nature 2023, 619, 811-8.

22. Gaudelet, T.; Day, B.; Jamasb, A. R.; et al. Utilizing graph machine learning within drug discovery and development. Brief. Bioinform. 2021, 22, bbab159.

23. Xie, T.; Grossman, J. C. Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties. Phys. Rev. Lett. 2018, 120, 145301.

24. Chen, C.; Ye, W.; Zuo, Y.; Zheng, C.; Ong, S. P. Graph networks as a universal machine learning framework for molecules and crystals. Chem. Mater. 2019, 31, 3564-72.

25. Réau, M.; Renaud, N.; Xue, L. C.; Bonvin, A. M. J. J. DeepRank-GNN: a graph neural network framework to learn patterns in protein-protein interfaces. Bioinformatics 2023, 39, btac759.

26. Asif, N. A.; Sarker, Y.; Chakrabortty, R. K.; et al. Graph neural network: a comprehensive review on non-Euclidean space. IEEE. Access. 2021, 9, 60588-606.

27. Bondy, A.; Murty, U. S. R. Graph theory, 1st edition. Springer. 2008. https://link.springer.com/book/9781846289699. (accessed 31 Jul 2025).

28. Cormen, T. H.; Leiserson, C. E.; Rivest, R. L.; Stein, C. Introduction to algorithms. 3rd edition. MIT Press: Cambridge, MA. 2009. https://enos.itcollege.ee/~japoia/algorithms/GT/Introduction_to_algorithms-3rd%20Edition.pdf. (accessed 31 Jul 2025).

29. Shen, L.; Zhou, J.; Yang, T.; Yang, M.; Feng, Y. P. High-throughput computational discovery and intelligent design of two-dimensional functional materials for various applications. Acc. Mater. Res. 2022, 3, 572-83.

30. Behler, J. Perspective: machine learning potentials for atomistic simulations. J. Chem. Phys. 2016, 145, 170901.

31. Unke, O. T.; Meuwly, M. PhysNet: a neural network for predicting energies, forces, dipole moments, and partial charges. J. Chem. Theory. Comput. 2019, 15, 3678-93.

32. Ben Chaabene, W.; Flah, M.; Nehdi, M. L. Machine learning prediction of mechanical properties of concrete: critical review. Constr. Build. Mater. 2020, 260, 119889.

33. Ren, Y.; Hu, T.; Xu, S.; Chen, C.; Xuan, W.; Ren, Z. Rapid estimation of γ' solvus temperature for composition design of Ni-based superalloy via physics-informed generative artificial intelligence. J. Alloys. Metall. Syst. 2024, 6, 100073.

34. Park, C. W.; Wolverton, C. Developing an improved crystal graph convolutional neural network framework for accelerated materials discovery. Phys. Rev. Mater. 2020, 4, 063801.

35. Christensen, A. S.; Bratholm, L. A.; Faber, F. A.; Anatole von Lilienfeld, O. FCHL revisited: faster and more accurate quantum machine learning. J. Chem. Phys. 2020, 152, 044107.

36. Reiser, P.; Neubert, M.; Eberhard, A.; et al. Graph neural networks for materials science and chemistry. Commun. Mater. 2022, 3, 93.

37. Gasteiger, J.; Giri, S.; Margraf, J. T.; Günnemann, S. Fast and uncertainty-aware directional message passing for non-equilibrium molecules. arXiv 2020, arXiv:2011.14115. https://doi.org/10.48550/arXiv.2011.14115. (accessed 31 Jul 2025).

38. Gilmer, J.; Schoenholz, S. S.; Riley, P. F.; Vinyals, O.; Dahl, G. E. Neural message passing for quantum chemistry. In Proceedings of the 34th International Conference on Machine Learning (ICML 2017), Sydney, Australia. Aug 6-11 2017. JMLR.org; 2017. pp. 1263-72.

39. Zhang, J.; Shi, X.; Xie, J.; Ma, H.; King, I.; Yeung, D. Y. GaAN: gated attention networks for learning on large and spatiotemporal graphs. arXiv 2018, arXiv:1803.07294. https://doi.org/10.48550/arXiv.1803.07294. (accessed 31 Jul 2025).

40. Zhang, M.; Cui, Z.; Neumann, M.; Chen, Y. An end-to-end deep-learning architecture for graph classification. In Proceedings of the 32nd AAAI Conference on Artificial Intelligence (AAAI 2018), New Orleans, USA. Feb 2-7 2018. AAAI Press; 2018. pp. 4438-45. https://muhanzhang.github.io/papers/AAAI_2018_DGCNN.pdf. (accessed 31 Jul 2025).

41. Kipf, T. N.; Welling, M. Semi-supervised classification with graph convolutional networks. arXiv 2017, arXiv:1609.02907. https://doi.org/10.48550/arXiv.1609.02907. (accessed 31 Jul 2025).

42. Hamilton, W. L.; Ying, R.; Leskovec, J. Inductive representation learning on large graphs. In Proceedings of the 31st Conference on Neural Information Processing Systems (NeurIPS 2017), Long Beach, USA. Dec 4-9 2017. Curran Associates Inc.; 2017. pp. 1025-35.

43. Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Liò, P.; Bengio, Y. Graph attention networks. arXiv 2017, arXiv:1710.10903. https://doi.org/10.48550/arXiv.1710.10903. (accessed 31 Jul 2025).

44. Chen, J.; Ma, T.; Xiao, C. FastGCN: fast learning with graph convolutional networks via importance sampling. arXiv 2018, arXiv:1801.10247. https://doi.org/10.48550/arXiv.1801.10247. (accessed 31 Jul 2025).

45. Li, Q.; Han, Z.; Wu, X. M. Deeper insights into graph convolutional networks for semi-supervised learning. In Proceedings of the 32nd AAAI Conference on Artificial Intelligence (AAAI 2018), New Orleans, USA. Feb 2-7, 2018. AAAI Press; 2018. pp. 3538-45.

46. Oviedo, F.; Ferres, J. L.; Buonassisi, T.; Butler, K. T. Interpretable and explainable machine learning for materials science and chemistry. Acc. Mater. Res. 2022, 3, 597-607.

47. Batalović, K.; Radaković, J.; Paskaš Mamula, B.; Kuzmanović, B.; Medić Ilić, M. Predicting the heat of hydride formation by graph neural network - exploring the structure–property relation for metal hydrides. Adv. Theory. Simul. 2022, 5, 2200293.

48. Choudhary, K.; Decost, B. Atomistic line graph neural network for improved materials property predictions. npj. Comput. Mater. 2021, 7, 650.

49. Dong, Z.; Feng, J.; Ji, Y.; Li, Y. SLI-GNN: a self-learning-input graph neural network for predicting crystal and molecular properties. J. Phys. Chem. A. 2023, 127, 5921-9.

50. Huang, K.; Zhai, J.; Zheng, Z.; Yi, Y.; Shen, X. Understanding and bridging the gaps in current GNN performance optimizations. In Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programmi, Virtual Event, Republic of Korea. 27 February - 3 March 2021. Association for Computing Machinery; 2021. pp. 119-32.

51. Law, J. N.; Pandey, S.; Gorai, P.; St John, P. C. Upper-bound energy minimization to search for stable functional materials with graph neural networks. JACS. Au. 2023, 3, 113-23.

52. Cui, Y.; Zhu, J.; Zhou, W.; et al. SA-GNN: prediction of material properties using graph neural network based on multi-head self-attention optimization. AIP. Adv. 2024, 14, 055033.

53. Chen, C.; Ong, S. P. A universal graph deep learning interatomic potential for the periodic table. Nat. Comput. Sci. 2022, 2, 718-28.

54. Batatia, I.; Kovacs, D. P.; Simm, G.; Ortner, C.; Csányi, G. MACE: higher-order equivariant message-passing neural networks for fast and accurate force fields. In Advances in Neural Information Processing Systems 35 (NeurIPS 2022). 2022. pp. 11423-36. https://proceedings.neurips.cc/paper_files/paper/2022/hash/4a36c3c51af11ed9f34615b81edb5bbc-Abstract-Conference.html. (accessed 31 Jul 2025).

55. Borge-Durán, I.; Bejarano, E. A.; Araya, L. A.; et al. Explainable GNN-derived structure–property relationships in interstitial-alloy materials. Research. Square. 2024.

56. Pagan, D. C.; Pash, C. R.; Benson, A. R.; Kasemer, M. P. Graph neural network modeling of grain-scale anisotropic elastic behavior using simulated and measured microscale data. npj. Comput. Mater. 2022, 8, 952.

57. Hu, G.; Latypov, M. I. AnisoGNN: graph neural networks generalizing to anisotropic properties of polycrystals. Comput. Mater. Sci. 2024, 243, 113121.

58. Hestroffer, J. M.; Charpagne, M.; Latypov, M. I.; Beyerlein, I. J. Graph neural networks for efficient learning of mechanical properties of polycrystals. Comput. Mater. Sci. 2023, 217, 111894.

59. Dai, M.; Demirel, M. F.; Liang, Y.; Hu, J. Graph neural networks for an accurate and interpretable prediction of the properties of polycrystalline materials. npj. Comput. Mater. 2021, 7, 574.

60. Dai, M.; Demirel, M. F.; Liu, X.; Liang, Y.; Hu, J. Graph neural network for predicting the effective properties of polycrystalline materials: a comprehensive analysis. Comput. Mater. Sci. 2023, 230, 112461.

61. Vlassis, N. N.; Ma, R.; Sun, W. Geometric deep learning for computational mechanics Part I: anisotropic hyperelasticity. Comput. Methods. Appl. Mech. Eng. 2020, 371, 113299.

62. Hu, Y.; Zhou, G.; Lee, M.; Wu, P.; Li, D. A temporal graph neural network for cross-scale modelling of polycrystals considering microstructure interaction. Int. J. Plast. 2024, 179, 104017.

63. Thomas, A.; Durmaz, A. R.; Alam, M.; Gumbsch, P.; Sack, H.; Eberl, C. Materials fatigue prediction using graph neural networks on microstructure representations. Sci. Rep. 2023, 13, 12562.

64. Karimi, K.; Salmenjoki, H.; Mulewska, K.; et al. Prediction of steel nanohardness by using graph neural networks on surface polycrystallinity maps. Scr. Mater. 2023, 234, 115559.

65. Sim, G.; Lee, M.; Latypov, M. I. FIP-GNN: graph neural networks for scalable prediction of grain-level fatigue indicator parameters. Scr. Mater. 2025, 255, 116407.

66. Hansen, C. K.; Whelan, G. F.; Hochhalter, J. D. Interpretable machine learning for microstructure-dependent models of fatigue indicator parameters. Int. J. Fatigue. 2024, 178, 108019.

67. Lupo Pasini, M.; Jung, G. S.; Irle, S. Graph neural networks predict energetic and mechanical properties for models of solid solution metal alloy phases. Comput. Mater. Sci. 2023, 224, 112141.

68. Lupo Pasini, M.; Burčul, M.; Reeve, S. T.; Eisenbach, M.; Perotto, S. Fast and accurate predictions of total energy for solid-solution alloys with graph convolutional neural networks. In Proceedings of the Smoky Mountains Computational Sciences & Engineering Conference (SMC 2021), Gatlinburg, USA. Aug 17-19 2021. Springer: Cham; 2021. pp. 79-98.

69. Massa, D.; Cieśliński, D.; Naghdi, A.; Papanikolaou, S. Substitutional alloying using crystal graph neural networks. AIP. Adv. 2024, 14, 015023.

70. Zhu, D.; Nie, M.; Wu, H.; et al. An optimized strategy for density prediction of intermetallics across varied crystal structures via graph neural network. J. Mater. Inf. 2025, 5, 8.

71. Shi, X.; Zhou, L.; Huang, Y.; et al. Machine learning assisted screening of binary alloys for metal-based anode materials. J. Energy. Chem. 2025, 104, 62-8.

72. Qin, Y.; Dewitt, S.; Radhakrishnan, B.; Biros, G. GrainGNN: a dynamic graph neural network for predicting 3D grain microstructure. J. Comput. Phys. 2024, 510, 113061.

73. Wang, J.; Kwon, H.; Oh, S.; Kim, H. S.; Lee, B. Interpretable and physics-informed modeling of solidification in alloy systems: a generalized framework for multi-component prediction. Acta. Mater. 2025, 286, 120716.

74. Beaver, N.; Dive, A.; Wong, M.; et al. Rapid assessment of stable crystal structures in single-phase high-entropy alloys via graph neural network-based surrogate modelling. Crystals 2024, 14, 1099.

75. Zhang, H.; Huang, R.; Chen, J.; Rondinelli, J. M.; Chen, W. Do graph neural networks work for high-entropy alloys? arXiv 2024, arXiv:2408.16337. https://doi.org/10.48550/arXiv.2408.16337. (accessed 31 Jul 2025).

76. Long, T.; Long, Z.; Pang, B. An end-to-end explainable graph neural networks-based composition to mechanical properties prediction framework for bulk metallic glasses. Mech. Mater. 2024, 191, 104945.

77. Yang, Z.; Buehler, M. J. Linking atomic structural defects to mesoscale properties in crystalline solids using graph neural networks. npj. Comput. Mater. 2022, 8, 879.

78. Zhou, J.; Chen, X.; Jiang, X.; et al. Machine-learning-accelerated screening of Heusler alloys for nitrogen reduction reaction with graph neural network. Appl. Surf. Sci. 2024, 669, 160519.

79. Koker, T.; Quigley, K.; Spaeth, W.; Frey, N. C.; Li, L. Graph contrastive learning for materials. arXiv 2022, arXiv:2211.13408. https://doi.org/10.48550/arXiv.2211.13408. (accessed 31 Jul 2025).

80. Park, Y. J.; Kumaran, M.; Hsu, C. W.; Olivetti, E.; Li, J. Contrastive learning of English language and crystal graphs for multimodal representation of materials knowledge. arXiv 2025, arXiv:2502.16451. https://doi.org/10.48550/arXiv.2502.16451. (accessed 31 Jul 2025).

81. Kipf, T. N.; Welling, M. Variational graph auto-encoders. arXiv 2016, arXiv:1611.07308. https://doi.org/10.48550/arXiv.1611.07308. (accessed 31 Jul 2025).

82. Hou, Z.; Liu, X.; Cen, Y.; et al. GraphMAE: self-supervised masked graph autoencoders. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery & Data Mining (KDD ’22), Washington, USA. Aug 14-18 2022. Association for Computing Machinery; 2022. pp. 594-604.

83. Li, J.; Wu, R.; Sun, W.; et al. What’s behind the mask: understanding masked graph modeling for graph autoencoders. arXiv 2023, arXiv:2205.10053. https://doi.org/10.48550/arXiv.2205.10053. (accessed 31 Jul 2025).

84. Xie, T.; Fu, X.; Ganea, O. E.; Barzilay, R.; Jaakkola, .; T, . Crystal diffusion variational autoencoder for periodic material generation. arXiv 2021, arXiv:2110.06197. https://doi.org/10.48550/arXiv.2110.06197. (accessed 31 Jul 2025).

85. Hou, Z.; He, Y.; Cen, Y.; et al. GraphMAE2: a decoding-enhanced masked self-supervised graph learner. arXiv 2023, arXiv:2304.04779. https://doi.org/10.48550/arXiv.2304.04779. (accessed 31 Jul 2025).

86. Liu, C.; Yao, Z.; Zhan, Y.; et al. Hi-GMAE: hierarchical graph masked autoencoders. arXiv 2024, arXiv:2405.10642. https://doi.org/10.48550/arXiv.2405.10642. (accessed 31 Jul 2025).

87. Merchant, A.; Batzner, S.; Schoenholz, S. S.; Aykol, M.; Cheon, G.; Cubuk, E. D. Scaling deep learning for materials discovery. Nature 2023, 624, 80-5.

88. Zeni, C.; Pinsler, R.; Zügner, D.; et al. A generative model for inorganic materials design. Nature 2025, 639, 624-32.

89. Gu, G. H.; Jang, J.; Noh, J.; Walsh, A.; Jung, Y. Perovskite synthesizability using graph neural networks. npj. Comput. Mater. 2022, 8, 757.

90. Deng, B.; Zhong, P.; Jun, K.; et al. CHGNet as a pretrained universal neural network potential for charge-informed atomistic modelling. Nat. Mach. Intell. 2023, 5, 1031-41.

91. Park, C. W.; Kornbluth, M.; Vandermause, J.; Wolverton, C.; Kozinsky, B.; Mailoa, J. P. Accurate and scalable graph neural network force field and molecular dynamics with direct force architecture. npj. Comput. Mater. 2021, 7, 543.

92. Vazquez, G.; Sauceda, D.; Arróyave, R. Deciphering chemical ordering in high entropy materials: a machine learning-accelerated high-throughput cluster expansion approach. Acta. Mater. 2024, 276, 120137.

93. Wu, S.; Wang, Z.; Zhang, H.; Cai, J.; Li, J. Deep learning accelerates the discovery of two-dimensional catalysts for hydrogen evolution reaction. Energy. Environ. Mater. 2023, 6, e12259.

94. Elrashidy, A.; Della-Giustina, J.; Yan, J. A. Accelerated data-driven discovery and screening of two-dimensional magnets using graph neural networks. J. Phys. Chem. C. 2024, 128, 6007-18.

95. Sibi, H.; Biju, J.; Chowdhury, C. Advancing 2D material predictions: superior work function estimation with atomistic line graph neural networks. RSC. Adv. 2024, 14, 38070-8.

96. Rahman, M. H.; Gollapalli, P.; Manganaris, P.; et al. Accelerating defect predictions in semiconductors using graph neural networks. APL. Mach. Learn. 2024, 2, 016122.

97. Ehsan, M. T.; Zafar, S.; Sarker, A.; Suvro, S. D.; Hasan, M. N. Graph neural-network framework for energy mapping of hybrid Monte-Carlo molecular-dynamics simulations of medium-entropy alloys. arXiv 2024, arXiv:2411.13670. https://doi.org/10.48550/arXiv.2411.13670. (accessed 31 Jul 2025).

98. Tian, Y.; Bagchi, S.; Myhill, L.; et al. Data-driven modeling of dislocation mobility from atomistics using physics-informed machine learning. npj. Comput. Mater. 2024, 10, 1394.

99. Ghafarollahi, A.; Buehler, M. J. Rapid and automated alloy design with graph neural-network-powered LLM-driven multi-agent systems. arXiv 2024, arXiv:2410.13768. https://doi.org/10.48550/arXiv.2410.13768. (accessed 31 Jul 2025).

100. Qi, C.; Wang, C.; Fu, D.; Shao, L.; Zhou, K.; Zhao, Z. A hybrid knowledge-guided and data-driven method for predicting low-alloy steels performance. Comput. Mater. Sci. 2025, 249, 113602.

101. Wang, B.; Liang, C.; Wang, J.; et al. DR-Label: improving GNN models for catalysis systems by label deconstruction and reconstruction. arXiv 2023, arXiv:2303.02875. https://doi.org/10.48550/arXiv.2303.02875. (accessed 31 Jul 2025).

102. Schütt, K.; Unke, O.; Gastegger, M. Equivariant message passing for the prediction of tensorial properties and molecular spectra. arXiv 2021, arXiv:2102.03150. https://doi.org/10.48550/arXiv.2102.03150. (accessed 31 Jul 2025).

103. Satorras, V. G.; Hoogeboom, E.; Welling, M. E(n) equivariant graph neural networks. arXiv 2021, arXiv:2102.09844. https://doi.org/10.48550/arXiv.2102.09844. (accessed 31 Jul 2025).

104. Liang, C.; Rouzhahong, Y.; Ye, C.; Li, C.; Wang, B.; Li, H. Material symmetry recognition and property prediction accomplished by crystal capsule representation. Nat. Commun. 2023, 14, 5198.

105. Wen, M.; Horton, M. K.; Munro, J. M.; Huck, P.; Persson, K. A. An equivariant graph neural network for the elasticity tensors of all seven crystal systems. Digit. Discov. 2024, 3, 869-82.

Journal of Materials Informatics
ISSN 2770-372X (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/