REFERENCES

1. Lau, J. H. Recent advances and trends in advanced packaging. IEEE. Trans. Compon. Packag. Manufact. Technol. 2022, 12, 228-52.

2. Tong, X. C. Electronic packaging materials and their functions in thermal managements. advanced materials for thermal management of electronic packaging. New York: Springer; 2011. pp. 131-67.

3. Tang, S.; Chen, J.; Hu, Y. B.; et al. Brief overview of the impact of thermal stress on the reliability of through silicon via: analysis, characterization, and enhancement. Mater. Sci. Semicond. Process. 2024, 183, 108745.

4. Zhang, S.; Qiu, Q.; Ding, T.; et al. Investigation of isothermal aged Sn-3Ag-0.5Cu/Sn58Bi-Co hybrid solder joints on ENIG and ENEPIG substrate with various mechanical performances. Mater. Today. Commun. 2024, 39, 108609.

5. Hu, W.; Jing, E.; Qiu, H.; Sun, Z. Discovering polyimides and their composites with targeted mechanical properties through explainable machine learning. J. Mater. Inf. 2025, 5, 1.

6. Li, X.; Zheng, M.; Pan, H.; Mao, C.; Ding, W. An integrated design of novel RAFM steels with targeted microstructures and tensile properties using machine learning and CALPHAD. J. Mater. Inf. 2024, 4, 27.

7. Jain, A.; Patel, H.; Nagalapatti, L.; et al. Overview and importance of data quality for machine learning tasks. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2020. pp. 3561-2.

8. Chen, H.; Chen, J.; Ding, J. Data evaluation and enhancement for quality improvement of machine learning. IEEE. Trans. Rel. 2021, 70, 831-47.

9. Kotsiantis, S. B.; Zaharakis, I. D.; Pintelas, P. E. Machine learning: a review of classification and combining techniques. Artif. Intell. Rev. 2006, 26, 159-90.

10. Sarker, I. H. Machine learning: algorithms, real-world applications and research directions. SN. Comput. Sci. 2021, 2, 160.

11. Zhu, L.; Zhou, J.; Sun, Z. Materials data toward machine learning: advances and challenges. J. Phys. Chem. Lett. 2022, 13, 3965-77.

12. Sheppard, D. Robert Le Rossignol, 1884-1976: Engineer of the ‘Haber’ process. Notes. Rec. R. Soc. Lond. 2017, 71, 263-96.

13. Hanak, J. J. The “multiple-sample concept” in materials research: synthesis, compositional analysis and testing of entire multicomponent systems. J. Mater. Sci. 1970, 5, 964-71.

14. Xiang, X. D.; Sun, X.; Briceño, G.; et al. A combinatorial approach to materials discovery. Science 1995, 268, 1738-40.

15. Green, M. L.; Choi, C. L.; Hattrick-Simpers, J. R.; et al. Fulfilling the promise of the materials genome initiative with high-throughput experimental methodologies. Appl. Phys. Rev. 2017, 4, 011105.

16. Kohn, W.; Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, A1133-8.

17. Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Phys. Rev. 1964, 136, B864-71.

18. Shen, L.; Zhou, J.; Yang, T.; Yang, M.; Feng, Y. P. High-throughput computational discovery and intelligent design of two-dimensional functional materials for various applications. Acc. Mater. Res. 2022, 3, 572-83.

19. Jin, K.; Suchoski, R.; Fackler, S.; et al. Combinatorial search of superconductivity in Fe-B composition spreads. APL. Mater. 2013, 1, 042101.

20. Wu, J.; Bollinger, A. T.; Sun, Y.; Božović, I. Hall effect in quantum critical charge-cluster glass. Proc. Natl. Acad. Sci. U. S. A. 2016, 113, 4284-9.

21. Stanev, V.; Oses, C.; Kusne, A. G.; et al. Machine learning modeling of superconducting critical temperature. npj. Comput. Mater. 2018, 4, 85.

22. Feng, R.; Zhang, C.; Gao, M. C.; et al. High-throughput design of high-performance lightweight high-entropy alloys. Nat. Commun. 2021, 12, 4329.

23. Rittiruam, M.; Noppakhun, J.; Setasuban, S.; et al. High-throughput materials screening algorithm based on first-principles density functional theory and artificial neural network for high-entropy alloys. Sci. Rep. 2022, 12, 16653.

24. Curtarolo, S.; Morgan, D.; Ceder, G. Accuracy of ab initio methods in predicting the crystal structures of metals: a review of 80 binary alloys. Calphad 2005, 29, 163-211.

25. Mueller, T.; Hautier, G.; Jain, A.; Ceder, G. Evaluation of tavorite-structured cathode materials for lithium-ion batteries using high-throughput computing. Chem. Mater. 2011, 23, 3854-62.

26. Aykol, M.; Kim, S.; Hegde, V. I.; et al. High-throughput computational design of cathode coatings for Li-ion batteries. Nat. Commun. 2016, 7, 13779.

27. Benayad, A.; Diddens, D.; Heuer, A.; et al. High-throughput experimentation and computational freeway lanes for accelerated battery electrolyte and interface development research. Adv. Energy. Mater. 2022, 12, 2102678.

28. Liu, B.; Zhao, J.; Liu, Y.; et al. Application of high-throughput first-principles calculations in ceramic innovation. J. Mater. Sci. Technol. 2021, 88, 143-57.

29. Zhang, W.; Liu, Y.; Zhou, Y.; et al. Anti-perovskite carbides and nitrides A3BX: a new family of damage tolerant ceramics. J. Mater. Sci. Technol. 2020, 40, 64-71.

30. Kaufmann, K.; Maryanovsky, D.; Mellor, W. M.; et al. Discovery of high-entropy ceramics via machine learning. npj. Comput. Mater. 2020, 6, 317.

31. Gómez-Bombarelli, R.; Aguilera-Iparraguirre, J.; Hirzel, T. D.; et al. Design of efficient molecular organic light-emitting diodes by a high-throughput virtual screening and experimental approach. Nat. Mater. 2016, 15, 1120-7.

32. Omar, ÖH.; Del Cueto, M.; Nematiaram, T.; Troisi, A. High-throughput virtual screening for organic electronics: a comparative study of alternative strategies. J. Mater. Chem. C. Mater. 2021, 9, 13557-83.

33. Li, Y.; Yang, J.; Zhao, R.; et al. Design of organic-inorganic hybrid heterostructured semiconductors via high-throughput materials screening for optoelectronic applications. J. Am. Chem. Soc. 2022, 144, 16656-66.

34. Yeo, B. C.; Nam, H.; Nam, H.; et al. High-throughput computational-experimental screening protocol for the discovery of bimetallic catalysts. npj. Comput. Mater. 2021, 7, 605.

35. Takahashi, K.; Takahashi, L.; Le, S. D.; Kinoshita, T.; Nishimura, S.; Ohyama, J. Synthesis of Heterogeneous catalysts in catalyst informatics to bridge experiment and high-throughput calculation. J. Am. Chem. Soc. 2022, 144, 15735-44.

36. Newbury, D. E.; Ritchie, N. W. M. Elemental mapping of microstructures by scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDS): extraordinary advances with the silicon drift detector (SDD). J. Anal. At. Spectrom. 2013, 28, 973.

37. Zhao, J. Combinatorial approaches as effective tools in the study of phase diagrams and composition–structure–property relationships. Prog. Mater. Sci. 2006, 51, 557-631.

38. Mine, Y.; Koga, K.; Kraft, O.; Takashima, K. Mechanical characterisation of hydrogen-induced quasi-cleavage in a metastable austenitic steel using micro-tensile testing. Scr. Mater. 2016, 113, 176-9.

39. Zhao, J.; Jackson, M. R.; Peluso, L. A.; Brewer, L. N. A diffusion multiple approach for the accelerated design of structural materials. MRS. Bull. 2002, 27, 324-9.

40. Butler, E. P. In situ experiments in the transmission electron microscope. Rep. Prog. Phys. 1979, 42, 833-95.

41. Luo, C.; Wang, C.; Wu, X.; Zhang, J.; Chu, J. In situ transmission electron microscopy characterization and manipulation of two-dimensional layered materials beyond graphene. Small 2017, 13, 1604259.

42. Jiang, Y.; Chen, Z.; Han, Y.; et al. Electron ptychography of 2D materials to deep sub-ångström resolution. Nature 2018, 559, 343-9.

43. Jiang, C.; Lu, H.; Zhang, H.; Shen, Y.; Lu, Y. Recent advances on in situ SEM mechanical and electrical characterization of low-dimensional nanomaterials. Scanning 2017, 2017, 1985149.

44. Wright, S. I.; Nowell, M. M. A review of in situ EBSD studies. In: Schwartz AJ, Kumar M, Adams BL, Field DP, editors. Electron backscatter diffraction in materials science. Boston: Springer US; 2009. pp. 329-37.

45. Luo, Y.; Wu, S. C.; Hu, Y. N.; Fu, Y. N. Cracking evolution behaviors of lightweight materials based on in situ synchrotron X-ray tomography: a review. Front. Mech. Eng. 2018, 13, 461-81.

46. Neuville, D. R.; Hennet, L.; Florian, P.; de Ligny, D. In situ high-temperature experiments. Rev. Mineral. Geochem. 2014, 78, 779-800.

47. Xu, H.; Qin, I.; Clauberg, H.; Chylak, B.; Acoff, V. L. New observation of nanoscale interfacial evolution in micro Cu–Al wire bonds by in-situ high resolution TEM study. Scr. Mater. 2016, 115, 1-5.

48. Malkorra, I.; Sao-Joao, S.; Costa, U.; et al. Multi-scale in-situ micro-mechanical characterization of Polymer Core Solder Ball (PCSB) coatings for BGA interconnections. Microelectron. Reliab. 2023, 148, 115135.

49. Zeng, G.; Mcdonald, S. D.; Gu, Q.; et al. The influence of Ni and Zn additions on microstructure and phase transformations in Sn–0.7Cu/Cu solder joints. Acta. Mater. 2015, 83, 357-71.

50. Côté, P.; Nikanjam, A.; Ahmed, N.; Humeniuk, D.; Khomh, F. Data cleaning and machine learning: a systematic literature review. Autom. Softw. Eng. 2024, 31, 453.

51. Krishnan, S.; Wang, J.; Franklin, M. J.; et al. SampleClean: fast and reliable analytics on dirty data. Bull IEEE Comput Soc Tech Comm Data Eng 2015;38:59-75. https://sirrice.github.io/files/papers/sampleclean-overview.pdf. (accessed 3 Jul 2025).

52. Krishnan, S.; Franklin, M. J.; Goldberg, K.; Wang, J.; Wu, E. ActiveClean: an interactive data cleaning framework for modern machine learning. In Proceedings of the 2016 International Conference on Management of Data. 2016. pp. 2117-20.

53. Rekatsinas, T.; Chu, X.; Ilyas, I. F.; Ré, C. HoloClean: holistic data repairs with probabilistic inference. arXiv 2017, arXiv:1702.00820. https://doi.org/10.48550/arXiv.1702.00820. (accessed 3 Jul 2025).

54. Krishnan, S.; Wu, E. AlphaClean: automatic generation of data cleaning pipelines. arXiv 2019, arXiv:1904.11827. https://doi.org/10.48550/arXiv.1904.11827. (accessed 3 Jul 2025).

55. Karlaš, B.; Li, P.; Wu, R.; et al. Nearest neighbor classifiers over incomplete information: from certain answers to certain predictions. arXiv 2020, arXiv:2005.05117. https://doi.org/10.48550/arXiv.2005.05117. (accessed 3 Jul 2025).

56. Li, J.; Cheng, K.; Wang, S.; et al. Feature selection: a data perspective. ACM. Comput. Surv. 2018, 50, 1-45.

57. Liu, H.; Motoda, H. Feature selection for knowledge discovery and data mining. 1st edition. New York: Springer; 1998.

58. Agarwal, S.; Dhyani, A.; Ranjan, P. Newton’s second law based PSO for feature selection: Newtonian PSO. J. Intell. Fuzzy. Syst. 2019, 37, 4923-35.

59. Blum, A. L.; Langley, P. Selection of relevant features and examples in machine learning. Artif. Intell. 1997, 97, 245-71.

60. Langley, P. Elements of machine learning. San Francisco: Morgan Kaufmann Publishers; 1996. https://archive.org/details/elementsofmachin0000lang. (accessed 3 Jul 2025).

61. Hoque, N.; Bhattacharyya, D.; Kalita, J. MIFS-ND: a mutual information-based feature selection method. Expert. Syst. Appl. 2014, 41, 6371-85.

62. Guyon, I.; Elisseeff, A.; Kaelbling, L. P. An introduction to variable and feature selection. J. Mach. Learn. Res. 2003, 3, 1157-82.

63. Jović, A.; Brkić, K.; Bogunović, N. A review of feature selection methods with applications. In 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Opatija, Croatia. May 25-29, 2015. IEEE; 2015. pp. 1200-5.

64. Cortizo, J. C.; Giraldez, I. Multi criteria wrapper improvements to Naive Bayes learning. In: Corchado E, Yin H, Botti V, Fyfe C, editors. Intelligent data engineering and automated learning - IDEAL 2006. Berlin: Springer Berlin Heidelberg; 2006. pp. 419-27.

65. Liu, C.; Jiang, D.; Yang, W. Global geometric similarity scheme for feature selection in fault diagnosis. Expert. Syst. Appl. 2014, 41, 3585-95.

66. Benoît, F.; van Heeswijk, M.; Miche, Y.; Verleysen, M.; Lendasse, A. Feature selection for nonlinear models with extreme learning machines. Neurocomputing 2013, 102, 111-24.

67. Ma, S.; Huang, J. Penalized feature selection and classification in bioinformatics. Brief. Bioinform. 2008, 9, 392-403.

68. Hsu, H.; Hsieh, C.; Lu, M. Hybrid feature selection by combining filters and wrappers. Expert. Syst. Appl. 2011, 38, 8144-50.

69. Hyvärinen, A. Survey of independent component analysis. Neural. Comput. Surv. 1999, 2, 94-128. https://members.loria.fr/MOBerger/Enseignement/Master2/Documents/surveyICA.pdf. (accessed 3 Jul 2025).

70. Zheng, Y.; Vanderbeek, B.; Daniel, E.; et al. An automated drusen detection system for classifying age-related macular degeneration with color fundus photographs. In 2013 IEEE 10th International Symposium on Biomedical Imaging, San Francisco, USA. Apr 17-11, 2013. IEEE; 2013. pp. 1448-51.

71. Cateni, S.; Vannucci, M.; Vannocci, M.; Coll, V. Variable selection and feature extraction through artificial intelligence techniques. In: Freitas L, editor. Multivariate analysis in management, engineering and the sciences. InTech; 2013.

72. Khalid, S.; Khalil, T.; Nasreen, S. A survey of feature selection and feature extraction techniques in machine learning. In 2014 Science and Information Conference, London, UK. Aug 27-29, 2014. IEEE; 2014. pp. 372-8.

73. Aksoy, S.; Haralick, R. M. Feature normalization and likelihood-based similarity measures for image retrieval. Pattern. Recognit. Lett. 2001, 22, 563-82.

74. Aksu, G.; Güzeller, C. O.; Eser, M. T. The effect of the normalization method used in different sample sizes on the success of artificial neural network model. Int. J. Assess. Tools. Educ. 2019, 6, 170-92.

75. Sola, J.; Sevilla, J. Importance of input data normalization for the application of neural networks to complex industrial problems. IEEE. Trans. Nucl. Sci. 1997, 44, 1464-8.

76. Hsu, C. W.; Chang, C. C.; Lin, C. J. A practical guide to support vector classification. 2003. https://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf. (accessed 3 Jul 2025).

77. van den Berg, R. A.; Hoefsloot, H. C.; Westerhuis, J. A.; Smilde, A. K.; van der Werf, M. J. Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC. Genomics. 2006, 7, 142.

78. Craig, A.; Cloarec, O.; Holmes, E.; Nicholson, J. K.; Lindon, J. C. Scaling and normalization effects in NMR spectroscopic metabonomic data sets. Anal. Chem. 2006, 78, 2262-7.

80. Reverter, A.; Barris, W.; McWilliam, S.; et al. Validation of alternative methods of data normalization in gene co-expression studies. Bioinformatics 2005, 21, 1112-20.

81. Noda, I. Scaling techniques to enhance two-dimensional correlation spectra. J. Mol. Struct. 2008, 883-4, 216-27.

82. Eriksson, L.; Jaworska, J.; Worth, A. P.; Cronin, M. T.; McDowell, R. M.; Gramatica, P. Methods for reliability and uncertainty assessment and for applicability evaluations of classification- and regression-based QSARs. Environ. Health. Perspect. 2003, 111, 1361-75.

83. Kvalheim, O. M.; Brakstad, F.; Liang, Y. Preprocessing of analytical profiles in the presence of homoscedastic or heteroscedastic noise. Anal. Chem. 1994, 66, 43-51.

84. Han, J.; Kamber, M. Data mining: concepts and techniques. https://mitmecsept.wordpress.com/wp-content/uploads/2017/04/data-mining-concepts-and-techniques-2nd-edition-impressao.pdf. (accessed 3 Jul 2025).

85. Dougherty, G. Pattern recognition and classification: an introduction. New York; Springer; 2013.

86. li, W.; Liu, Z. A method of SVM with normalization in intrusion detection. Procedia. Environ. Sci. 2011, 11, 256-62.

87. Jain, A.; Nandakumar, K.; Ross, A. Score normalization in multimodal biometric systems. Pattern. Recognit. 2005, 38, 2270-85.

88. Ruppert, D. Robust statistics: the approach based on influence functions. Technometrics 1987, 29, 240-1.

89. Priddy, K. L.; Keller, P. E. Artificial neural networks : an introduction. New Delhi: Prentice-Hall India; 2007.

90. Huang, G.; Liu, Z.; van der Maaten, L.; Weinberger, K. Q. Densely connected convolutional networks. arXiv 2016, arXiv:1608.06993. https://doi.org/10.48550/arXiv.1608.06993. (accessed 3 Jul 2025).

91. Zhou, P.; Ni, B.; Geng, C.; Hu, J.; Xu, Y. Scale-transferrable object detection. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA. Jun 18-23, 2018. IEEE; 2018. pp. 528-38.

92. Fukushima, K.; Miyake, S. Neocognitron: a new algorithm for pattern recognition tolerant of deformations and shifts in position. Pattern. Recognit. 1982, 15, 455-69.

93. Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE. 1998, 86, 2278-324.

94. Alom, M. Z.; Taha, T. M.; Yakopcic, C.; et al. The history began from AlexNet: a comprehensive survey on deep learning approaches. arXiv 2018, arXiv:1803.01164. https://doi.org/10.48550/arXiv.1803.01164. (accessed 3 Jul 2025).

95. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. https://doi.org/10.48550/arXiv.1409.1556. (accessed 3 Jul 2025).

96. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. arXiv 2015, arXiv:1512.03385. https://doi.org/10.48550/arXiv.1512.03385. (accessed 3 Jul 2025).

97. Farizhandi, A. A. K.; Betancourt, O.; Mamivand, M. Deep learning approach for chemistry and processing history prediction from materials microstructure. Sci. Rep. 2022, 12, 4552.

98. Tan, M.; Le, Q. V. EfficientNet: rethinking model scaling for convolutional neural networks. arXiv 2019, arXiv:1905.11946. https://doi.org/10.48550/arXiv.1905.11946. (accessed 3 Jul 2025).

99. Kondo, R.; Yamakawa, S.; Masuoka, Y.; Tajima, S.; Asahi, R. Microstructure recognition using convolutional neural networks for prediction of ionic conductivity in ceramics. Acta. Mater. 2017, 141, 29-38.

100. Kunwar, A.; Malla, P. B.; Sun, J.; Qu, L.; Ma, H. Convolutional neural network model for synchrotron radiation imaging datasets to automatically detect interfacial microstructure: an in situ process monitoring tool during solar PV ribbon fabrication. Sol. Energy. 2021, 224, 230-44.

101. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. arXiv 2014, arXiv:1411.4038. https://doi.org/10.48550/arXiv.1411.4038. (accessed 3 Jul 2025).

102. Guo, M.; Xu, T.; Liu, J.; et al. Attention mechanisms in computer vision: a survey. Comp. Visual. Med. 2022, 8, 331-68.

103. Qu, J.; Hou, S.; Dong, W.; Li, Y.; Xie, W. A multilevel encoder–decoder attention network for change detection in hyperspectral images. IEEE. Trans. Geosci. Remote. Sensing. 2022, 60, 1-13.

104. Hou, Q.; Cheng, M. M.; Hu, X.; Borji, A.; Tu, Z.; Torr, P. H. S. Deeply supervised salient object detection with short connections. IEEE. Trans. Pattern. Anal. Mach. Intell. 2019, 41, 815-28.

105. Wang, Z.; Zhang, T.; Shao, Y.; Ding, B. LSTM-convolutional-BLSTM encoder-decoder network for minimum mean-square error approach to speech enhancement. Appl. Acoust. 2021, 172, 107647.

106. Garg, S.; Krishnamurthi, R. A CNN encoder decoder LSTM model for sustainable wind power predictive analytics. Sustain. Comput. Inform. Syst. 2023, 38, 100869.

107. Tong, J.; Xie, L.; Fang, S.; Yang, W.; Zhang, K. Hourly solar irradiance forecasting based on encoder–decoder model using series decomposition and dynamic error compensation. Energy. Convers. Manag. 2022, 270, 116049.

108. Andreieva, V.; Shvai, N. Generalization of cross-entropy loss function for image classification. Mohyl. Math. J. 2021, 3, 3-10.

109. Gao, Z.; Wang, Q.; Mei, T.; Cheng, X.; Zi, Y.; Yang, H. An enhanced encoder-decoder network architecture for reducing information loss in image semantic segmentation. arXiv 2024, arXiv:2406.01605. https://doi.org/10.48550/arXiv.2406.01605. (accessed 3 Jul 2025).

110. Guo, Q.; Wang, C.; Xiao, D.; Huang, Q. A novel multi-label pest image classifier using the modified Swin Transformer and soft binary cross entropy loss. Eng. Appl. Artif. Intell. 2023, 126, 107060.

111. Guo, C.; Chen, X.; Chen, Y.; Yu, C. Multi-stage attentive network for motion deblurring via binary cross-entropy loss. Entropy 2022, 24, 1414.

112. Xing, Y.; Zhong, L.; Zhong, X. An encoder-decoder network based FCN architecture for semantic segmentation. Wirel. Commun. Mob. Comput. 2020, 2020, 1-9.

113. Lin, T. Y.; Goyal, P.; Girshick, R.; He, K.; Dollar, P. Focal loss for dense object detection. IEEE. Trans. Pattern. Anal. Mach. Intell. 2020, 42, 318-27.

114. Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation. arXiv 2015, arXiv:1511.00561. https://doi.org/10.48550/arXiv.1511.00561. (accessed 3 Jul 2025).

115. Badrinarayanan, V.; Handa, A.; Cipolla, R. SegNet: a deep convolutional encoder-decoder architecture for robust semantic pixel-wise labelling. arXiv 2015, arXiv:1505.07293. https://doi.org/10.48550/arXiv.1505.07293. (accessed 3 Jul 2025).

116. Kendall, A.; Badrinarayanan, V.; Cipolla, R. Bayesian SegNet: model uncertainty in deep convolutional encoder-decoder architectures for scene understanding. arXiv 2015, arXiv:1511.02680. https://doi.org/10.48550/arXiv.1511.02680. (accessed 3 Jul 2025).

117. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: convolutional networks for biomedical image segmentation. In: Navab N, Hornegger J, Wells WM, Frangi AF, editors. Medical image computing and computer-assisted intervention - MICCAI 2015. Cham: Springer International Publishing; 2015. pp. 234-41.

118. Zhou, Z.; Rahman Siddiquee, M. M.; Tajbakhsh, N.; Liang, J. UNet++: a nested U-Net architecture for medical image segmentation. In: Stoyanov D, Taylor Z, Carneiro G, et al, editors. Deep learning in medical image analysis and multimodal learning for clinical decision support. Cham: Springer International Publishing; 2018. pp. 3-11.

119. Bangaru, S. S.; Wang, C.; Zhou, X.; Hassan, M. Scanning electron microscopy (SEM) image segmentation for microstructure analysis of concrete using U-net convolutional neural network. Autom. Constr. 2022, 144, 104602.

120. Pratt, L.; Govender, D.; Klein, R. Defect detection and quantification in electroluminescence images of solar PV modules using U-net semantic segmentation. Renew. Energy. 2021, 178, 1211-22.

121. Bertoldo, J. P. C.; Decencière, E.; Ryckelynck, D.; Proudhon, H. A modular U-Net for automated segmentation of X-ray tomography images in composite materials. Front. Mater. 2021, 8, 761229.

122. Shi, P.; Duan, M.; Yang, L.; Feng, W.; Ding, L.; Jiang, L. An improved U-Net image segmentation method and its application for metallic grain size statistics. Materials 2022, 15, 4417.

123. Bhavani, M. D.; Murugan, R.; Goel, T. Robust U-Net: development of robust image enhancement model using modified U-Net architecture. Concurr. Comput. Pract. Exp. 2022, 34, e7347.

124. Lian, Z.; Zhao, H.; Zhang, Q.; Wang, H.; Erdun, E. Enhancement of biomass material characterization images using an improved U-Net. Comput. Mater. Continua. 2022, 72, 1515-28.

125. Zhu, L.; Han, Y.; Li, L.; Xi, X.; Zhu, M.; Yan, B. Metal artifact reduction for X-ray computed tomography using U-Net in image domain. IEEE. Access. 2019, 7, 98743-54.

126. Yang, D.; Jiang, H.; Liu, Z.; Wang, Y.; Cheng, H. Radiographic image enhancement based on a triple constraint U-Net network. insight 2022, 64, 511-9.

127. Chen, L. C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A. L. Semantic image segmentation with deep convolutional nets and fully connected CRFs. arXiv 2014, arXiv:1412.7062. https://doi.org/10.48550/arXiv.1412.7062. (accessed 3 Jul 2025).

128. Liu, C.; Chen, L. C.; Schroff, F.; et al. Auto-DeepLab: hierarchical neural architecture search for semantic image segmentation. arXiv 2019, arXiv:1901.02985. https://doi.org/10.48550/arXiv.1901.02985. (accessed 3 Jul 2025).

129. Chen, L. C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A. L. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE. Trans. Pattern. Anal. Mach. Intell. 2018, 40, 834-48.

130. Chen, L. C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable convolution for semantic image segmentation. arXiv 2018, arXiv:1802.02611. https://doi.org/10.48550/arXiv.1802.02611. (accessed 3 Jul 2025).

131. Chen, L. C.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking atrous convolution for semantic image segmentation. arXiv 2017, arXiv:1706.05587. https://doi.org/10.48550/arXiv.1706.05587. (accessed 3 Jul 2025).

132. Shrivastava, A.; Liu, J.; Dayal, K.; Noh, H. Y. Predicting peak stresses in microstructured materials using convolutional encoder–decoder learning. Math. Mech. Solids. 2022, 27, 1336-57.

133. Konstantinova, T.; Wiegart, L.; Rakitin, M.; DeGennaro, A. M.; Barbour, A. M. Noise reduction in X-ray photon correlation spectroscopy with convolutional neural networks encoder-decoder models. Sci. Rep. 2021, 11, 14756.

134. Tsopanidis, S.; Moreno, R. H.; Osovski, S. Toward quantitative fractography using convolutional neural networks. Eng. Fract. Mech. 2020, 231, 106992.

135. Goodfellow, I. J.; Pouget-Abadie, J.; Mirza, M.; et al. Generative adversarial networks. arXiv 2014, arXiv:1406.2661. https://doi.org/10.48550/arXiv.1406.2661. (accessed 3 Jul 2025).

136. Arjovsky, M.; Chintala, S.; Bottou, L. Wasserstein GAN. arXiv 2017, arXiv:1701.07875. https://doi.org/10.48550/arXiv.1701.07875. (accessed 3 Jul 2025).

137. Mao, X.; Li, Q.; Xie, H.; Lau, R. Y. K.; Wang, Z.; Smolley, S. P. Least squares generative adversarial networks. arXiv 2016, arXiv:1611.04076. https://doi.org/10.48550/arXiv.1611.04076. (accessed 3 Jul 2025).

138. Berthelot, D.; Schumm, T.; Metz, L. BEGAN: boundary equilibrium generative adversarial networks. arXiv 2017, arXiv:1703.10717. https://doi.org/10.48550/arXiv.1703.10717. (accessed 3 Jul 2025).

139. Mirza, M.; Osindero, S. Conditional generative adversarial nets. arXiv 2014, arXiv:1411.1784. https://doi.org/10.48550/arXiv.1411.1784. (accessed 3 Jul 2025).

140. Isola, P.; Zhu, J. Y.; Zhou, T.; Efros, A. A. Image-to-image translation with conditional adversarial networks. arXiv 2016, arXiv:1611.07004. https://doi.org/10.48550/arXiv.1611.07004. (accessed 3 Jul 2025).

141. Zhu, J. Y.; Park, T.; Isola, P.; Efros, A. A. Unpaired image-to-image translation using cycle-consistent adversarial networks. arXiv 2017, arXiv:1703.10593. https://doi.org/10.48550/arXiv.1703.10593. (accessed 3 Jul 2025).

142. Yi, Z.; Zhang, H.; Tan, P.; Gong, M. DualGAN: unsupervised dual learning for image-to-image translation. arXiv 2017, arXiv:1704.02510. https://doi.org/10.48550/arXiv.1704.02510. (accessed 3 Jul 2025).

143. Chai, C.; Liao, J.; Zou, N.; Sun, L. A one-to-many conditional generative adversarial network framework for multiple image-to-image translations. Multimed. Tools. Appl. 2018, 77, 22339-66.

144. Huang, H.; Du, Y.; Gong, M.; et al. Experimental quantum generative adversarial networks for image generation. Phys. Rev. Appl. 2021, 16, 024051.

145. Kench, S.; Cooper, S. J. Generating three-dimensional structures from a two-dimensional slice with generative adversarial network-based dimensionality expansion. Nat. Mach. Intell. 2021, 3, 299-305.

146. Mao, Y.; He, Q.; Zhao, X. Designing complex architectured materials with generative adversarial networks. Sci. Adv. 2020, 6, eaaz4169.

147. Dan, Y.; Zhao, Y.; Li, X.; Li, S.; Hu, M.; Hu, J. Generative adversarial networks (GAN) based efficient sampling of chemical composition space for inverse design of inorganic materials. npj. Comput. Mater. 2020, 6, 352.

148. Narikawa, R.; Fukatsu, Y.; Wang, Z.; et al. Generative adversarial networks-based synthetic microstructures for data-driven materials design. Adv. Theory. Simul. 2022, 5, 2100470.

149. Aryan, P.; Sampath, S.; Sohn, H. An overview of non-destructive testing methods for integrated circuit packaging inspection. Sensors 2018, 18, 1981.

150. Pal, M. K.; Gergely, G.; Gácsi, Z. Growth kinetics and IMCs layer analysis of SAC305 solder with the reinforcement of SiC during the isothermal aging condition. J. Mater. Res. Technol. 2023, 24, 8320-31.

151. Chen, Y.; Xie, B.; Long, J.; et al. Interfacial laser-induced graphene enabling high-performance liquid-solid triboelectric nanogenerator. Adv. Mater. 2021, 33, e2104290.

152. Zhu, Y.; Sun, F. Geometric size effect on IMC growth and elements diffusion in Cu/Sn/Cu solder joints. SSMT 2017, 29, 85-91.

153. Magnien, J.; Khatibi, G.; Lederer, M.; Ipser, H. Investigation of interfacial behavior in miniaturized solder interconnects. Mater. Sci. Eng. A. 2016, 673, 541-50.

154. Huang, P.; Chung, M.; Jhan, J.; Hwang, B.; Chen, C. Strong grain size effect on the liquid/solid reactions between molten solder and electroplated Cu. Mater. Today. Commun. 2024, 41, 110236.

155. Cao, H.; Zhang, Y.; Zhang, Y.; Han, J.; Su, D.; Zhang, Z. Effect of the anisotropic characteristics of β-Sn on current-induced solder evolution. Mater. Design. 2022, 224, 111339.

156. Pham, A. M.; Haq, F.; Sadasiva, S.; Li, G.; Koslowski, M. Effect of Sn orientation on electromigration failure in CuSn solders. J. Electron. Mater. 2024, 53, 6424-31.

157. Li, C.; Yuan, H.; Ma, Z.; Cheng, X. Effect of βSn grain orientations on the electromigration-induced evolution of voids in SAC305 BGA solder joints. Mater. Charact. 2024, 215, 114227.

158. Ling, Q.; Isa, N. A. M. Printed circuit board defect detection methods based on image processing, machine learning and deep learning: a survey. IEEE. Access. 2023, 11, 15921-44.

159. Arena, P.; Basile, A.; Bucolo, M.; Fortuna, L. Image processing for medical diagnosis using CNN. Nucl. Instrum. Methods. Phys. Res. Sect. A. 2003, 497, 174-8.

160. Matsumoto, T.; Yokohama, T.; Suzuki, H.; et al. Several image processing examples by CNN. In IEEE International Workshop on Cellular Neural Networks and their Applications, Budapest, Hungary. Dec 16-19, 1990. IEEE; 1990. pp. 100-11.

161. Zeng, L.; Sun, B.; Zhu, D. Underwater target detection based on Faster R-CNN and adversarial occlusion network. Eng. Appl. Artif. Intell. 2021, 100, 104190.

162. Jia, W.; Tian, Y.; Luo, R.; Zhang, Z.; Lian, J.; Zheng, Y. Detection and segmentation of overlapped fruits based on optimized mask R-CNN application in apple harvesting robot. Comput. Electron. Agric. 2020, 172, 105380.

163. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE. Trans. Pattern. Anal. Mach. Intell. 2017, 39, 1137-49.

164. Cheng, J. C.; Wang, M. Automated detection of sewer pipe defects in closed-circuit television images using deep learning techniques. Autom. Constr. 2018, 95, 155-71.

165. Xu, X.; Lei, Y.; Yang, F. Railway subgrade defect automatic recognition method based on improved Faster R-CNN. Sci. Program. 2018, 2018, 1-12.

166. Chen, M.; Yu, L.; Zhi, C.; et al. Improved faster R-CNN for fabric defect detection based on Gabor filter with Genetic Algorithm optimization. Comput. Ind. 2022, 134, 103551.

167. Wang, Y.; Liu, M.; Zheng, P.; Yang, H.; Zou, J. A smart surface inspection system using faster R-CNN in cloud-edge computing environment. Adv. Eng. Inform. 2020, 43, 101037.

168. Li, Y. T.; Guo, J. I. A VGG-16 based Faster RCNN model for PCB error inspection in industrial AOI applications. In 2018 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW), Taichung, Taiwan. May 19-21, 2018. IEEE; 2018. p. 1-2.

169. Ma, C.; Chao, Y.; Zhu, J.; Wang, Y.; Liu, W.; Han, Z. Chip surface defect recognition based on improved Faster R-CNN. In 2022 28th International Conference on Mechatronics and Machine Vision in Practice (M2VIP), Nanjing, China. Nov 16-18, 2022. IEEE; 2022. p. 1-6.

170. Hu, B.; Wang, J. Detection of PCB surface defects with improved Faster-RCNN and feature pyramid network. IEEE. Access. 2020, 8, 108335-45.

171. Wang, J.; Chen, K.; Yang, S.; Loy, C. C.; Lin, D. Region proposal by guided anchoring. arXiv 2019, arXiv:1901.03278. https://doi.org/10.48550/arXiv.1901.03278. (accessed 3 Jul 2025).

172. Shen, X.; Xing, Y.; Lu, J.; Yu, F. Detection of surface defect on flexible printed circuit via guided box improvement in GA-Faster-RCNN network. PLoS. One. 2023, 18, e0295400.

173. Lin, T. Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. arXiv 2016, arXiv:1612.03144. https://doi.org/10.48550/arXiv.1612.03144. (accessed 3 Jul 2025).

174. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: unified, real-time object detection. arXiv 2015, arXiv:1506.02640. https://doi.org/10.48550/arXiv.1506.02640. (accessed 3 Jul 2025).

175. Sapkota, R.; Calero, M. F.; Qureshi, R.; et al. YOLO advances to its genesis: a decadal and comprehensive review of the You Only Look Once (YOLO) series. arXiv 2024, arXiv:2406.19407. https://doi.org/10.48550/arXiv.2406.19407. (accessed 3 Jul 2025).

176. Wang, A.; Chen, H.; Liu, L.; et al. YOLOv10: real-time end-to-end object detection. arXiv 2024, arXiv:2405.14458. https://doi.org/10.48550/arXiv.2405.14458. (accessed 3 Jul 2025).

177. Wang, C.; Yeh, I.; Mark Liao, H. YOLOv9: learning what you want to learn using programmable gradient information. In: Leonardis A, Ricci E, Roth S, Russakovsky O, Sattler T, Varol G, editors. Computer Vision - ECCV 2024. Cham: Springer Nature Switzerland; 2025. pp. 1-21.

178. Redmon, J.; Farhadi, A. YOLO9000: better, faster, stronger. arXiv 2016, arXiv:1612.08242. https://doi.org/10.48550/arXiv.1612.08242. (accessed 3 Jul 2025).

179. Redmon, J.; Farhadi, . YOLOv3: an incremental improvement. arXiv 2018, arXiv:1804.02767. https://doi.org/10.48550/arXiv.1804.02767. (accessed 3 Jul 2025).

180. Bochkovskiy, A.; Wang, C. Y.; Liao, H. Y. M. YOLOv4: optimal speed and accuracy of object detection. arXiv 2004, arXiv:2004.10934. https://doi.org/10.48550/arXiv.2004.10934. (accessed 3 Jul 2025).

181. Li, C.; Li, L.; Jiang, H.; et al. YOLOv6: a single-stage object detection framework for industrial applications. arXiv 2022, arXiv:2209.02976. https://doi.org/10.48550/arXiv.2209.02976. (accessed 3 Jul 2025).

182. Wang, C. Y.; Bochkovskiy, A.; Liao, H. Y. M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. arXiv 2022, arXiv:2207.02696. https://doi.org/10.48550/arXiv.2207.02696. (accessed 3 Jul 2025).

183. Mostafa, T.; Chowdhury, S. J.; Rhaman, M. K.; Alam, M. G. R. Occluded object detection for autonomous vehicles employing YOLOv5, YOLOX and Faster R-CNN. In 2022 IEEE 13th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), Vancouver, Canada. Oct 12-15, 2022. IEEE; 2022. pp. 0405-10.

184. Ye, C.; Wang, Y.; Wang, Y.; Tie, M. Steering angle prediction YOLOv5-based end-to-end adaptive neural network control for autonomous vehicles. Proc. Inst. Mech. Eng. D. J. Automob. Eng. 2022, 236, 1991-2011.

185. Jia, X.; Tong, Y.; Qiao, H.; Li, M.; Tong, J.; Liang, B. Fast and accurate object detector for autonomous driving based on improved YOLOv5. Sci. Rep. 2023, 13, 9711.

186. Chen, Z.; Wang, X.; Zhang, W.; Yao, G.; Li, D.; Zeng, L. Autonomous parking space detection for electric vehicles based on improved YOLOV5-OBB algorithm. WEVJ 2023, 14, 276.

187. Patel, P.; Vekariya, V.; Shah, J.; Vala, B. Detection of traffic sign based on YOLOv8. AIP. Conf. Proc. 2024, 3107, 050015.

188. Mao, W.; Wang, C.; Chou, P.; Liu, Y. Automated defect detection for mass-produced electronic components based on YOLO object detection models. IEEE. Sensors. J. 2024, 24, 26877-88.

189. Hinz, T, Fisher M, Wang O, Wermter S. Improved techniques for training single-image GANs. arXiv 2020, arXiv:2003.11512. https://doi.org/10.48550/arXiv.2003.11512. (accessed 3 Jul 2025).

190. Cao, Y.; Ni, Y.; Zhou, Y.; Li, H.; Huang, Z.; Yao, E. An auto chip package surface defect detection based on deep learning. IEEE. Trans. Instrum. Meas. 2024, 73, 1-15.

191. Lin, Y. L.; Chiang, Y. M.; Hsu, H. C. Capacitor detection in PCB using YOLO algorithm. In 2018 International Conference on System Science and Engineering (ICSSE), New Taipei, Taiwan. Jun 28-30, 2018. IEEE; 2018. p. 1-4.

192. Zuo, Y.; Wang, J.; Song, J. Application of YOLO object detection network in weld surface defect detection. In 2021 IEEE 11th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER), Jiaxing, China. Jul 27-31, 2021. IEEE; 2021. pp. 704-10.

193. Liao, S.; Huang, C.; Liang, Y.; Zhang, H.; Liu, S. Solder joint defect inspection method based on ConvNeXt-YOLOX. IEEE. Trans. Compon. Packag. Manufact. Technol. 2022, 12, 1890-8.

194. Bhatasana, M.; Marconnet, A. Machine-learning assisted optimization strategies for phase change materials embedded within electronic packages. Appl. Therm. Eng. 2021, 199, 117384.

195. Jain, D.; Chaube, S.; Khullar, P.; Goverapet Srinivasan, S.; Rai, B. Bulk and surface DFT investigations of inorganic halide perovskites screened using machine learning and materials property databases. Phys. Chem. Chem. Phys. 2019, 21, 19423-36.

196. Yang, J.; Mannodi-Kanakkithodi, A. High-throughput computations and machine learning for halide perovskite discovery. MRS. Bull. 2022, 47, 940-8.

197. Mannodi-Kanakkithodi, A. A guide to discovering next-generation semiconductor materials using atomistic simulations and machine learning. Comput. Mater. Sci. 2024, 243, 113108.

198. Tsymbalov, E.; Shi, Z.; Dao, M.; Suresh, S.; Li, J.; Shapeev, A. Machine learning for deep elastic strain engineering of semiconductor electronic band structure and effective mass. npj. Comput. Mater. 2021, 7, 538.

199. Na, G. S.; Jang, S.; Lee, Y. L.; Chang, H. Tuplewise material representation based machine learning for accurate band gap prediction. J. Phys. Chem. A. 2020, 124, 10616-23.

200. Jain, A.; Ong, S. P.; Hautier, G.; et al. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL. Mater. 2013, 1, 011002.

201. Wan, Z.; Wang, Q.; Liu, D.; Liang, J. Effectively improving the accuracy of PBE functional in calculating the solid band gap via machine learning. Comput. Mater. Sci. 2021, 198, 110699.

202. Huang, Y.; Yu, C.; Chen, W.; et al. Band gap and band alignment prediction of nitride-based semiconductors using machine learning. J. Mater. Chem. C. 2019, 7, 3238-45.

203. Siriwardane, E. M. D.; Zhao, Y.; Perera, I.; Hu, J. Generative design of stable semiconductor materials using deep learning and density functional theory. npj. Comput. Mater. 2022, 8, 850.

204. Haghshenas, Y.; Wong, W. P.; Sethu, V.; Amal, R.; Kumar, P. V.; Teoh, W. Y. Full prediction of band potentials in semiconductor materials. Mater. Today. Phys. 2024, 46, 101519.

205. Pruksawan, S.; Lambard, G.; Samitsu, S.; Sodeyama, K.; Naito, M. Prediction and optimization of epoxy adhesive strength from a small dataset through active learning. Sci. Technol. Adv. Mater. 2019, 20, 1010-21.

206. Jin, K.; Luo, H.; Wang, Z.; Wang, H.; Tao, J. Composition optimization of a high-performance epoxy resin based on molecular dynamics and machine learning. Mater. Design. 2020, 194, 108932.

207. Liu, Z. First-principles calculations and CALPHAD modeling of thermodynamics. J. Phase. Equilib. Diffus. 2009, 30, 517-34.

208. Zhang, H.; Dai, J.; Cao, Y.; Zhang, Y.; Bao, M.; Yin, Y. A first-principles study of the mechanical and physical properties of Ni3Snx intermetallic compounds for high-temperature power device packaging. Intermetallics 2024, 164, 108112.

209. Fu, R.; Huang, W.; Pan, K.; Pi, J.; Zhang, J. First-principles study on IMC formation and interface failure of electronic packaging solder joints. J. Phys. Conf. Ser. 2023, 2483, 012021.

210. Boldon, L.; Laliberte, F.; Liu, L. Review of the fundamental theories behind small angle X-ray scattering, molecular dynamics simulations, and relevant integrated application. Nano. Rev. 2015, 6, 25661.

211. Gao, Z.; Sheng, C.; Wang, S.; Xue, L.; Zhang, Y.; Liu, S. Effects of interface structure on the mechanical properties and deformation mechanisms of Copper–Tantalum interface via molecular dynamic simulation. IEEE. Trans. Compon. Packag. Manufact. Technol. 2024, 14, 61-70.

212. Ji, C.; Cai, X.; Zhou, Z.; Dong, F.; Liu, S.; Gao, B. Effects of intermetallic compound layer thickness on the mechanical properties of silicon-copper interface. Mater. Design. 2021, 212, 110251.

213. Zhang, J.; Chen, W.; Tang, H.; Zhu, X.; Zhang, G.; Fan, J. Molecular dynamics assisted corrosion-resistant evaluation of encapsulation materials on copper used in power electronics packaging. In 2024 25th International Conference on Electronic Packaging Technology (ICEPT), Tianjin, China. Aug 07-09, 2024. IEEE; 2024. p. 1-5.

214. Ahsan, M.; Hon, S. T.; Batunlu, C.; Albarbar, A. Reliability assessment of IGBT through modelling and experimental testing. IEEE. Access. 2020, 8, 39561-73.

215. Wang, C.; He, Y.; Wang, C.; Wu, X.; Li, L. A fusion algorithm for online reliability evaluation of microgrid inverter IGBT. Electronics 2020, 9, 1294.

216. Rao, Z.; Huang, M.; Zha, X. IGBT remaining useful life prediction based on particle filter with fusing precursor. IEEE. Access. 2020, 8, 154281-9.

217. Quan, R.; Li, H.; Hu, Y.; Gao, P. A novel IGBT health evaluation method based on multi-label classification. IEEE. Access. 2019, 7, 47294-302.

218. Wu, J.; Zhou, L.; Du, X.; Sun, P. Junction temperature prediction of IGBT power module based on BP neural network. J. Electr. Eng. Technol. 2014, 9, 970-7.

219. Dou, Y.; Hassanien, A. E. An improved prediction model of IGBT junction temperature based on backpropagation neural network and kalman filter. Complexity 2021, 2021, 5542889.

220. Wang, S.; Gao, H.; Takyi-Aninakwa, P.; Guerrero, J. M.; Fernandez, C.; Huang, Q. Improved multiple feature-electrochemical thermal coupling modeling of lithium-ion batteries at low-temperature with real-time coefficient correction. Prot. Control. Mod. Power. Syst. 2024, 9, 157-73.

221. Li, Y.; Wang, S.; Liu, D.; Cui, Y.; Fernandez, C.; Blaabjerg, F. Improved multi-head Bi-directional long and short-term memory temporal convolutional network for lithium-ion batteries state of charge estimation in energy storage systems. In 2024 IEEE 25th China Conference on System Simulation Technology and Its Application (CCSSTA), Tianjin, China. Jul 21-23, 2024. IEEE; 2024. pp. 581-6.

222. Xu, X.; Wang, S.; Wang, C.; Fernandez, C.; Blaabjerg, F. A novel back propagation neural network-square root Cubature Kalman filtering strategy based on fusion dual factor parameter identification for state-of-charge estimation of lithium-ion batteries. In 2024 IEEE 4th New Energy and Energy Storage System Control Summit Forum (NEESSC), Hotthot, China. Aug 29-31, 2024. IEEE; 2024. pp. 120-6.

223. Gharaibeh, A. R.; Rangarajan, S.; Soud, Q.; Al-Zubi, O.; Manaserh, Y.; Sammakia, B. Thermal challenges in heterogeneous packaging: experimental and machine learning approaches to liquid cooling. Appl. Therm. Eng. 2025, 260, 125081.

224. Djedidi, O.; Djeziri, M. A.; Benmoussa, S. Remaining useful life prediction in embedded systems using an online auto-updated machine learning based modeling. Microelectro. Reliab. 2021, 119, 114071.

225. Huang, G.; Zhu, Q.; Siew, C. Extreme learning machine: theory and applications. Neurocomputing 2006, 70, 489-501.

226. Liu, B.; Chen, G.; Lin, H.; Zhang, W.; Liu, J. Prediction of IGBT junction temperature using improved cuckoo search-based extreme learning machine. Microelectron. Reliab. 2021, 124, 114267.

227. Majd, M.; Meszmer, P.; Prisacaru, A.; Gromala, P. J.; Wunderle, B. Stress prognostics for encapsulated standard packages by neural networks using data from in-situ condition monitoring during thermal shock tests. In 2020 21st International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE), Cracow, Poland. Jul 05-08, 2020. IEEE; 2020. pp. 1-10.

228. Chang, Y. W.; Cheng, Y.; Helfen, L.; et al. Electromigration mechanism of failure in flip-chip solder joints based on discrete void formation. Sci. Rep. 2017, 7, 17950.

229. R, E.; Kavithaa, G.; Samavatian, V.; Alhaifi, K.; Kokabi, A.; Moayedi, H. Reliability enhancement of a power semiconductor with optimized solder layer thickness. IEEE. Trans. Power. Electron. 2020, 35, 6397-404.

230. Sayyadi, R.; Naffakh-Moosavy, H. The role of intermetallic compounds in controlling the microstructural, physical and mechanical properties of Cu-[Sn-Ag-Cu-Bi]-Cu solder joints. Sci. Rep. 2019, 9, 8389.

231. Belhadi, M. E. A.; Wei, X.; Vyas, P.; et al. Effects of matching lead-free solder joints compared to SnPb on BGA reliability in thermal cycling. In SMTA International Conference Proceedings, Minneapolis, USA. 2021. https://www.researchgate.net/publication/364720767_Effects_of_Matching_Lead-free_Solder_Joints_Compared_to_SnPb_on_BGA_Reliability_in_Thermal_Cycling. (accessed 3 Jul 2025).

232. Belhadi, M. E. A.; Hamasha, S.; Alahmer, A.; Qasaimeh, Q.; Alakayleh, A.; Alavi, S. Investigating the evolution of creep properties during thermal cycling of homogeneous lead-free solder joints. IEEE. Trans. Compon. Packag. Manufact. Technol. 2023, 13, 1951-65.

233. Li, L.; Ma, D.; Li, Z. Cox-proportional hazards modeling in reliability analysis - a study of electromagnetic relays data. IEEE. Trans. Compon. Packag. Manufact. Technol. 2015, 5, 1582-9.

234. Tang, Z.; Zhou, C.; Jiang, W.; et al. Analysis of significant factors on cable failure using the cox proportional hazard model. IEEE. Trans. Power. Deliv. 2014, 29, 951-7.

235. You, M.; Liu, F.; Meng, G. Proportional hazards model for reliability analysis of solder joints under various drop-impact and vibration conditions. Proc. Inst. Mech. Eng. O. J. Risk. Reliab. 2012, 226, 194-202.

236. Ogbomo, O. O.; Amalu, E. H.; Ekere, N.; Olagbegi, P. Effect of operating temperature on degradation of solder joints in crystalline silicon photovoltaic modules for improved reliability in hot climates. Sol. Energy. 2018, 170, 682-93.

237. Han, Y.; Gao, Y.; Jing, H.; Wei, J.; Zhao, L.; Xu, L. A modified constitutive model of Ag nanoparticle-modified graphene/Sn–Ag–Cu/Cu solder joints. Mater. Sci. Eng. A. 2020, 777, 139080.

238. Park, B.; Myung, W.; Lee, C.; Jung, S. Mechanical, electrical, and thermal reliability of Sn-58wt.%Bi solder joints with Ag-decorated MWCNT for LED package component during aging treatment. Compos. Part. B. Eng. 2020, 182, 107617.

239. Hah, J.; Kim, Y.; Fernandez-zelaia, P.; et al. Comprehensive comparative analysis of microstructure of Sn–Ag–Cu (SAC) solder joints by traditional reflow and thermo-compression bonding (TCB) processes. Materialia 2019, 6, 100327.

240. Samavatian, V.; Fotuhi-Firuzabad, M.; Samavatian, M.; Dehghanian, P.; Blaabjerg, F. Correlation-driven machine learning for accelerated reliability assessment of solder joints in electronics. Sci. Rep. 2020, 10, 14821.

241. Hsu, P. N.; Shie, K. C.; Chen, K. P.; et al. Artificial intelligence deep learning for 3D IC reliability prediction. Sci. Rep. 2022, 12, 6711.

242. Yuan, C. C. A.; Lee, C. Solder joint reliability modeling by sequential artificial neural network for glass wafer level chip scale package. IEEE. Access. 2020, 8, 143494-501.

243. Reihanisaransari, R.; Samadifam, F.; Salameh, A. A.; Mohammadiazar, F.; Amiri, N.; Channumsin, S. Reliability characterization of solder joints in electronic systems through a neural network aided approach. IEEE. Access. 2022, 10, 123757-68.

244. Chen, Z.; Zhang, J.; Wang, S.; Wong, C. P. Challenges and prospects for advanced packaging. Fundam. Res. 2024, 4, 1455-8.

245. Chaware, R.; Hariharan, G.; Lin, J.; et al. Assembly challenges in developing 3D IC package with ultra high yield and high reliability. In 2015 IEEE 65th Electronic Components and Technology Conference (ECTC), San Diego, USA. May 26-19, 2015. IEEE; 2015. pp. 1447-51.

246. Takekoshi, M.; Nishido, K.; Okada, Y.; Suzuki, N.; Nonaka, T. Warpage suppression during FO-WLP fabrication process. In 2017 IEEE 67th Electronic Components and Technology Conference (ECTC), Orlando, USA. May 30 - Jun 02, 2017. IEEE; 2017. pp. 902-8.

247. Lee, C.; Kao, K.; Cheng, R.; Zhan, C.; Chang, T. Reliability enhancements of chip-on-chip package with layout designs of microbumps. Microelectro. Eng. 2014, 120, 138-45.

248. Alpern, P.; Wicher, V.; Tilgner, R. A simple test chip to assess chip and package design in the case of plastic assembling. IEEE. Trans. Comp. Packag. Manufact. Technol. A. 1994, 17, 583-9.

249. Huang, P.; Pan, K.; Wang, S.; Chen, S. Study on packaging structure of high power multi-chip LED. In 2012 13th International Conference on Electronic Packaging Technology & High Density Packaging, Guilin, China. Aug 13-16, 2012. IEEE; 2012. pp. 1516-20.

250. Lau, J. H. Recent advances and new trends in flip chip technology. J. Electron. Packag. 2016, 138, 030802.

251. Pascariu, G.; Cronin, P.; Crowley, D. Next generation electronics packaging utilizing flip chip technology. In IEEE/CPMT/SEMI 28th International Electronics Manufacturing Technology Symposium, San Jose, USA. Jul 16-18, 2003. IEEE; 2003. pp. 423-6.

252. Heinrich, W. The flip-chip approach for millimeter wave packaging. IEEE. Microw. Mag. 2005, 6, 36-45.

253. Hong, J.; Xu, Z.; Chen, J.; Yin, Z. High-efficiency revolving-turret chip transferring technology for flip chip packaging. IEEE. Trans. Compon. Packag. Manufact. Technol. 2018, 8, 154-64.

254. Wu, H.; Chu, W. Machine learning assisted structural design optimization for flip chip packages. In 2021 6th International Conference on Integrated Circuits and Microsystems (ICICM), Nanjing, China. Oct 22-24, 2021. IEEE; 2021. pp. 132-6.

255. Chu, W.; Ho, P. S.; Li, W. An adaptive machine learning method based on finite element analysis for ultra low-k chip package design. IEEE. Trans. Compon. Packag. Manufact. Technol. 2021, 11, 1435-41.

256. Garud, S. S.; Karimi, I. A.; Kraft, M. Design of computer experiments: a review. Comput. Chem. Eng. 2017, 106, 71-95.

257. Lai, J. P.; Lin, Y. L.; Lin, H. C.; Shih, C. Y.; Wang, Y. P.; Pai, P. F. RLC circuit forecast in analog IC packaging and testing by machine learning techniques. Micromachines 2022, 13, 1305.

258. Shih, M.; Huang, Y.; Lin, G. Next-generation high-density PCB development by fan-out RDL technology. IEEE. Trans. Device. Mater. Relib. 2022, 22, 296-305.

259. Long, X.; Ding, X.; Su, Y.; et al. Rapid model generation and analysis of mechanical behaviour of electronic packaging structures by machine learning. In 2022 23rd International Conference on Electronic Packaging Technology (ICEPT), Dalian, China. Aug 10-13, 2022. IEEE; 2022. p. 1-4.

260. Chae, H.; Zhu, K.; Mutnury, B.; et al. ISOP+: machine learning-assisted inverse stack-up optimization for advanced package design. IEEE. Trans. Comput. Aided. Des. Integr. Circuits. Syst. 2024, 43, 2-15.

261. Gu, A.; Auyoong, J. 3D measurement workflow for packaging development and production control using high-resolution 3D X-ray microscope. In 2018 IEEE 20th Electronics Packaging Technology Conference (EPTC), Singapore. Dec 04-07, 2018. IEEE; 2018. pp. 206-10.

262. Gu, A.; Terada, M.; Stegmann, H.; Rodgers, T.; Fu, C.; Yang, Y. From system to package to interconnect: an artificial intelligence powered 3D X-ray imaging solution for semiconductor package structural analysis and correlative microscopic failure analysis. In 2022 IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA), Singapore. Jul 18-21, 2022. IEEE; 2022. p. 1-5.

263. Gu, A.; Andreyev, A.; Terada, M.; Rodgers, T.; Viswanathan, V. A deep learning reconstruction technique and workflow to enhance 3D X-ray imaging resolution and speed for electronics package failure analysis. In 2023 International Conference on Electronics Packaging (ICEP), Kumamoto, Japan. Apr 19-22, 2023. IEEE; 2023. pp. 69-70.

264. Villarraga-Gómez, H.; Crosby, K.; Terada, M.; Rad, M. N. Assessing electronics with advanced 3D X-ray imaging techniques, nanoscale tomography, and deep learning. J. Fail. Anal. Prev. 2024, 24, 2113-28.

265. Villarraga-Gómez, H.; Andreyev, A.; Andrew, M.; et al. Improving scan time and image quality in 3D X-ray microscopy by deep learning reconstruction techniques. In 36th ASPE Annual Meeting, Minneapolis, USA. 2021. pp. 361-6. https://www.researchgate.net/publication/355796890_Improving_scan_time_and_image_quality_in_3D_X-ray_microscopy_by_deep_learning_reconstruction_techniques. (accessed 3 Jul 2025).

266. Gu, A.; Andreyev, A.; Terada, M.; Zee, B.; Mohammad-Zulkifli, S.; Yang, Y. Accelerate your 3D X-ray failure analysis by deep learning high resolution reconstruction. In ISTFA Proceedings, Phoenix, USA. Oct 31 - Nov 4, 2021.

267. Zhang, Y.; Yao, Z.; Ritschel, T.; Villanueva-Perez, P. ONIX: an X-ray deep-learning tool for 3D reconstructions from sparse views. Appl. Res. 2023, 2, e202300016.

Journal of Materials Informatics
ISSN 2770-372X (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/