REFERENCES

1. Xiong, Z.; Xiang, S.; Lv, Y.; Chen, B.; Zhang, Z. Hydrogen-bonded organic frameworks as an appealing platform for luminescent sensing. Adv. Funct. Mater. 2024, 34, 2403635.

2. Yang, Q.; Hu, Z.; Zhu, S.; et al. Donor engineering for NIR-II molecular fluorophores with enhanced fluorescent performance. J. Am. Chem. Soc. 2018, 140, 1715-24.

3. Hayashi, S.; Koizumi, T. Elastic organic crystals of a fluorescent π-conjugated molecule. Angew. Chem. Int. Ed. Engl. 2016, 55, 2701-4.

4. Wang, C.; Adams, S. R.; Ahrens, E. T. Emergent fluorous molecules and their uses in molecular imaging. Acc. Chem. Res. 2021, 54, 3060-70.

5. Tu, L.; Xie, Y.; Li, Z.; Tang, B. Aggregation-induced emission: red and near-infrared organic light-emitting diodes. SmartMat 2021, 2, 326-46.

6. Yoshida, K.; Gong, J.; Kanibolotsky, A. L.; Skabara, P. J.; Turnbull, G. A.; Samuel, I. D. W. Electrically driven organic laser using integrated OLED pumping. Nature 2023, 621, 746-52.

7. Hong, G.; Gan, X.; Leonhardt, C.; et al. A brief history of OLEDs-emitter development and industry milestones. Adv. Mater. 2021, 33, e2005630.

8. Thakur, K.; van der Zee, B.; Sachnik, O.; et al. Effect of tert-butylation on the photophysics of thermally activated delayed fluorescence emitters. Adv. Photonics. Res. 2024, 5, 2400022.

9. Stavrou, K.; Franca, L. G.; Danos, A.; Monkman, A. P. Key requirements for ultraefficient sensitization in hyperfluorescence organic light-emitting diodes. Nat. Photon. 2024, 18, 554-61.

10. Eggeman, A. S.; Illig, S.; Troisi, A.; Sirringhaus, H.; Midgley, P. A. Measurement of molecular motion in organic semiconductors by thermal diffuse electron scattering. Nat. Mater. 2013, 12, 1045-9.

11. Wei, Q.; Fei, N.; Islam, A.; et al. Small-molecule emitters with high quantum efficiency: mechanisms, structures, and applications in OLED devices. Adv. Opt. Mater. 2018, 6, 1800512.

12. Kuang, C.; Li, S.; Murtaza, I.; et al. Enhanced horizontal dipole orientation by novel penta-helicene anthracene-based host for efficient blue fluorescent OLEDs. Small 2024, 20, e2311114.

13. Cho, H. H.; Congrave, D. G.; Gillett, A. J.; et al. Suppression of Dexter transfer by covalent encapsulation for efficient matrix-free narrowband deep blue hyperfluorescent OLEDs. Nat. Mater. 2024, 23, 519-26.

14. Gómez-Bombarelli, R.; Aguilera-Iparraguirre, J.; Hirzel, T. D.; et al. Design of efficient molecular organic light-emitting diodes by a high-throughput virtual screening and experimental approach. Nat. Mater. 2016, 15, 1120-7.

15. Joung, J. F.; Han, M.; Hwang, J.; Jeong, M.; Choi, D. H.; Park, S. Deep learning optical spectroscopy based on experimental database: potential applications to molecular design. JACS. Au. 2021, 1, 427-38.

16. Shi, H.; Shi, Y.; Liang, Z.; et al. Machine learning-enabled discovery of multi-resonance TADF molecules: unraveling PLQY predictions from molecular structures. Chem. Eng. J. 2024, 494, 153150.

17. Sun, M.; Fu, C.; Su, H.; et al. Enhancing chemistry-intuitive feature learning to improve prediction performance of optical properties. Chem. Sci. 2024, 15, 17533-46.

18. Weiss, T.; Mayo Yanes, E.; Chakraborty, S.; Cosmo, L.; Bronstein, A. M.; Gershoni-Poranne, R. Guided diffusion for inverse molecular design. Nat. Comput. Sci. 2023, 3, 873-82.

19. Zeni, C.; Pinsler, R.; Zügner, D.; et al. A generative model for inorganic materials design. Nature 2025, 639, 624-32.

20. Alakhdar, A.; Poczos, B.; Washburn, N. Diffusion models in de novo drug design. J. Chem. Inf. Model. 2024, 64, 7238-56.

21. Gómez-Bombarelli, R.; Wei, J. N.; Duvenaud, D.; et al. Automatic chemical design using a data-driven continuous representation of molecules. ACS. Cent. Sci. 2018, 4, 268-76.

22. Zhang, K.; Yang, X.; Wang, Y.; et al. Artificial intelligence in drug development. Nat. Med. 2025, 31, 45-59.

23. Moret, M.; Friedrich, L.; Grisoni, F.; Merk, D.; Schneider, G. Generative molecular design in low data regimes. Nat. Mach. Intell. 2020, 2, 171-80.

24. Sumita, M.; Terayama, K.; Suzuki, N.; et al. De novo creation of a naked eye-detectable fluorescent molecule based on quantum chemical computation and machine learning. Sci. Adv. 2022, 8, eabj3906.

25. Joung, J. F.; Han, M.; Jeong, M.; Park, S. Experimental database of optical properties of organic compounds. Sci. Data. 2020, 7, 295.

26. Gong, J.; Gong, W.; Wu, B.; et al. ASBase: the universal database for aggregate science. Aggregate 2023, 4, e263.

27. Li, P.; Wang, Z.; Li, W.; Yuan, J.; Chen, R. Design of thermally activated delayed fluorescence materials with high intersystem crossing efficiencies by machine learning-assisted virtual screening. J. Phys. Chem. Lett. 2022, 13, 9910-8.

28. Kim, H.; Lee, K.; Kim, J. H.; Kim, W. Y. Deep learning-based chemical similarity for accelerated organic light-emitting diode materials discovery. J. Chem. Inf. Model. 2024, 64, 677-89.

29. Blaskovits, J. T.; Laplaza, R.; Vela, S.; Corminboeuf, C. Data-driven discovery of organic electronic materials enabled by hybrid top-down/bottom-up design. Adv. Mater. 2024, 36, e2305602.

30. Zdrazil, B.; Felix, E.; Hunter, F.; et al. The ChEMBL Database in 2023: a drug discovery platform spanning multiple bioactivity data types and time periods. Nucleic. Acids. Res. 2024, 52, D1180-92.

31. Guo, J.; Sun, M.; Zhao, X.; et al. General graph neural network-based model to accurately predict cocrystal density and insight from data quality and feature representation. J. Chem. Inf. Model. 2023, 63, 1143-56.

32. Medina-Franco, J. L.; Martínez-Mayorga, K.; Bender, A.; Scior, T. Scaffold diversity analysis of compound data sets using an entropy-based measure. QSAR. Comb. Sci. 2009, 28, 1551-60.

33. Niu, Y.; Li, W.; Peng, Q.; et al. MOlecular MAterials Property Prediction Package (MOMAP) 1.0: a software package for predicting the luminescent properties and mobility of organic functional materials. Mol. Phys. 2018, 116, 1078-90.

34. Park, Y.; Lee, J.; Jung, D. H.; et al. An aromatic imine group enhances the EL efficiency and carrier transport properties of highly efficient blue emitter for OLEDs. J. Mater. Chem. 2010, 20, 5930.

35. Kotaka, H.; Konishi, G.; Mizuno, K. Synthesis and photoluminescence properties of π-extended fluorene derivatives: the first example of a fluorescent solvatochromic nitro-group-containing dye with a high fluorescence quantum yield. Tetrahedron. Lett. 2010, 51, 181-4.

36. Liu, X.; Liang, F.; Ding, L.; et al. The study on two kinds of spiro systems for improving the performance of host materials in blue phosphorescent organic light-emitting diodes. J. Mater. Chem. C. 2015, 3, 9053-6.

Journal of Materials Informatics
ISSN 2770-372X (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/