REFERENCES

1. Hu, M.; Ji, S.; Li, M.; Liu, L.; Cheng, H. Revealing the aging-induced chemical and microstructure evolution of asphalt via AFM-IR and quantum chemistry simulation. Fuel 2025, 395, 135218.

2. Abdul Jameel, A. G.; Van Oudenhoven, V.; Emwas, A.; Sarathy, S. M. Predicting octane number using nuclear magnetic resonance spectroscopy and artificial neural networks. Energy. Fuels. 2018, 32, 6309-29.

3. Alvarez, E.; Marroquín, G.; Trejo, F.; Centeno, G.; Ancheyta, J.; Díaz, J. A. Pyrolysis kinetics of atmospheric residue and its SARA fractions. Fuel 2011, 90, 3602-7.

4. Chakravarthy, R.; Naik, G. N.; Savalia, A.; et al. Determination of naphthenic acid number in petroleum crude oils and their fractions by mid-fourier transform infrared spectroscopy. Energy. Fuels. 2016, 30, 8579-86.

5. Corbett, L. W. Composition of asphalt based on generic fractionation, using solvent deasphaltening, elution-adsorption chromatography, and densimetric characterization. Anal. Chem. 1969, 41, 576-9.

6. Elbaz, A. M.; Gani, A.; Hourani, N.; Emwas, A.; Sarathy, S. M.; Roberts, W. L. TG/DTG, FT-ICR mass spectrometry, and NMR spectroscopy study of heavy fuel oil. Energy. Fuels. 2015, 29, 7825-35.

7. Lesueur, D. The colloidal structure of bitumen: consequences on the rheology and on the mechanisms of bitumen modification. Adv. Colloid. Interface. Sci. 2009, 145, 42-82.

8. Loeber, L.; Muller, G.; Morel, J.; Sutton, O. Bitumen in colloid science: a chemical, structural and rheological approach. Fuel 1998, 77, 1443-50.

9. Pfeiffer, J. P.; Saal, R. N. J. Asphaltic bitumen as colloid system. J. Phys. Chem. 1940, 44, 139-49.

10. Hu, M.; Lyu, L.; Pahlavan, F.; Han, P.; Sun, D.; Fini, E. H. Toward sustainable non-emitting asphalts: understanding diffusion–adsorption mechanisms of hazardous organic compounds. Adv. Sustain. Syst. 2025, 9, 2400868.

11. Roja, K. L.; Masad, E. Influence of chemical constituents of asphalt binders on their rheological properties. Transp. Res. Rec. J. Transp. Res. Board. 2019, 2673, 458-66.

12. Wang, J.; Zhang, R.; Wang, R.; et al. Prediction of the fundamental viscoelasticity of asphalt mixtures using ML algorithms. Constr. Build. Mater. 2024, 442, 137573.

13. Hofko, B.; Eberhardsteiner, L.; Füssl, J.; et al. Impact of maltene and asphaltene fraction on mechanical behavior and microstructure of bitumen. Mater. Struct. 2016, 49, 829-41.

14. Sakib, N.; Hajj, R.; Hure, R.; Alomari, A.; Bhasin, A. Examining the relationship between bitumen polar fractions, rheological performance benchmarks, and tensile strength. J. Mater. Civ. Eng. 2020, 32, 04020143.

15. Xu, Y.; Zhang, E.; Shan, L. Effect of SARA on rheological properties of asphalt binders. J. Mater. Civ. Eng. 2019, 31, 04019086.

16. Weigel, S.; Stephan, D. Relationships between the chemistry and the physical properties of bitumen. Road. Mater. Pavement. Des. 2018, 19, 1636-50.

17. Wang, T.; Wang, J.; Hou, X.; Xiao, F. Effects of SARA fractions on low temperature properties of asphalt binders. Road. Mater. Pavement. Des. 2021, 22, 539-56.

18. Wang, J.; Wang, T.; Hou, X.; Xiao, F. Modelling of rheological and chemical properties of asphalt binder considering SARA fraction. Fuel 2019, 238, 320-30.

19. Qu, X.; Fan, Z.; Li, T.; et al. Understanding of asphalt chemistry based on the six-fraction method. Constr. Build. Mater. 2021, 311, 125241.

20. Li, J.; Xing, X.; Hou, X.; Wang, T.; Wang, J.; Xiao, F. Determination of SARA fractions in asphalts by mid-infrared spectroscopy and multivariate calibration. Measurement 2022, 198, 111361.

21. Gong, M.; Yang, J.; Zhang, J.; Zhu, H.; Tong, T. Physical–chemical properties of aged asphalt rejuvenated by bio-oil derived from biodiesel residue. Constr. Build. Mater. 2016, 105, 35-45.

22. Xiao, X.; Wang, J.; Wang, T.; Amirkhanian, S. N.; Xiao, F. Linear visco-elasticity of asphalt in view of proportion and polarity of SARA fractions. Fuel 2024, 363, 130955.

23. Kim, M.; Kang, D.; Kim, H. B. Geometric mean based boosting algorithm with over-sampling to resolve data imbalance problem for bankruptcy prediction. Expert. Syst. Appl. 2015, 42, 1074-82.

24. Li, Z.; Kamnitsas, K.; Glocker, B. Overfitting of neural nets under class imbalance: analysis and improvements for segmentation. In: Shen D, Liu T, Peters TM, Staib LH, Essert C, Zhou S, Yap P, Khan A, editors. Medical Image Computing and Computer Assisted Intervention - MICCAI 2019. Cham: Springer International Publishing; 2019. pp. 402-10.

25. Koushik, A.; Manoj, M.; Nezamuddin, N. SHapley Additive exPlanations for explaining artificial neural network based mode choice models. Transp. Dev. Econ. 2024, 10, 200.

26. Yan, T.; Xing, X.; Xia, T.; Wang, D. Relation between fault characteristic frequencies and local interpretability shapley additive explanations for continuous machine health monitoring. Eng. Appl. Artif. Intell. 2024, 136, 109046.

27. Shan, L.; Xie, R.; Wagner, N. J.; He, H.; Liu, Y. Microstructure of neat and SBS modified asphalt binder by small-angle neutron scattering. Fuel 2019, 253, 1589-96.

28. Yen, T. F. The colloidal aspect of a macrostructure of petroleum asphalt. Fuel. Sci. Technol. Int. 1992, 10, 723-33.

29. Barré, L.; Jestin, J.; Morisset, A.; Palermo, T.; Simon, S. Relation between nanoscale structure of asphaltene aggregates and their macroscopic solution properties. Oil. Gas. Sci. Technol. Rev. IFP. 2009, 64, 617-28.

30. Tan, Y.; Li, G.; Dan, L.; Lyu, H.; Meng, A. Research progress of bitumen microstructures and components. J. Traffic. Transp. Eng. 2020, 20, 1-17.

Journal of Materials Informatics
ISSN 2770-372X (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/