1. Zhang, L.; Mei, L.; Wang, K.; et al. Advances in the application of perovskite materials. Nanomicro. Lett. 2023, 15, 177.
2. Liu, J.; Zhang, S.; Wang, W.; Zhang, H. Photoelectrocatalytic principles for meaningfully studying photocatalyst properties and photocatalysis processes: from fundamental theory to environmental applications. J. Energy. Chem. 2023, 86, 84-117.
3. Tan, S.; Huang, T.; Yavuz, I.; et al. Stability-limiting heterointerfaces of perovskite photovoltaics. Nature 2022, 605, 268-73.
4. Lu, T.; Li, M.; Lu, W.; Zhang, T. Recent progress in the data-driven discovery of novel photovoltaic materials. J. Mater. Inf. 2022, 2, 7.
5. Wen, J.; Rong, K.; Jiang, L.; et al. Copper-based perovskites and perovskite-like halides: a review from the perspective of molecular level. Nano. Energy. 2024, 128, 109802.
6. Aydin, E.; Ugur, E.; Yildirim, B. K.; et al. Enhanced optoelectronic coupling for perovskite/silicon tandem solar cells. Nature 2023, 623, 732-8.
7. Isikgor, F. H.; Zhumagali, S.; Merino, L. V. T.; De Bastiani, M.; Mcculloch, I.; De Wolf, S. Molecular engineering of contact interfaces for high-performance perovskite solar cells. Nat. Rev. Mater. 2023, 8, 89-108.
8. Zhang, Z. Light-emitting materials for wearable electronics. Nat. Rev. Mater. 2022, 7, 839-40.
9. Jang, E.; Jang, H. Review: quantum dot light-emitting diodes. Chem. Rev. 2023, 123, 4663-92.
10. Han, T.; Jang, K. Y.; Dong, Y.; Friend, R. H.; Sargent, E. H.; Lee, T. A roadmap for the commercialization of perovskite light emitters. Nat. Rev. Mater. 2022, 7, 757-77.
11. Xiong, R.; Zhang, L.; Wen, C.; Anpo, M.; Ang, Y. S.; Sa, B. Ferroelectric switching driven photocatalytic overall water splitting in the As/In2Se3 heterostructure. J. Mater. Chem. A. 2025, 13, 4563-75.
12. Chen, Z.; Yao, D.; Chu, C.; Mao, S. Photocatalytic H2O2 production systems: design strategies and environmental applications. Chem. Eng. J. 2023, 451, 138489.
13. Zhou, P.; Navid, I. A.; Ma, Y.; et al. Solar-to-hydrogen efficiency of more than 9% in photocatalytic water splitting. Nature 2023, 613, 66-70.
14. Fan, Y.; Huang, W.; Zhu, F.; et al. Dispersion-assisted high-dimensional photodetector. Nature 2024, 630, 77-83.
15. Li, Z.; Yan, T.; Fang, X. Low-dimensional wide-bandgap semiconductors for UV photodetectors. Nat. Rev. Mater. 2023, 8, 587-603.
16. Wang, H.; Li, Z.; Li, D.; et al. Van der Waals integration based on two-dimensional materials for high-performance infrared photodetectors. Adv. Funct. Mater. 2021, 31, 2103106.
17. Saliba, M.; Matsui, T.; Seo, J. Y.; et al. Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy. Environ. Sci. 2016, 9, 1989-97.
18. Zhang, Y.; Chen, Y.; Liu, G.; et al. Nonalloyed α-phase formamidinium lead triiodide solar cells through iodine intercalation. Science 2025, 387, 284-90.
19. Tan, T.; Jiang, X.; Wang, C.; Yao, B.; Zhang, H. 2D material optoelectronics for information functional device applications: status and challenges. Adv. Sci. 2020, 7, 2000058.
20. Dastgeer, G.; Afzal, A. M.; Nazir, G.; Sarwar, N. p-GeSe/n-ReS2 heterojunction rectifier exhibiting a fast photoresponse with ultra-high frequency-switching applications. Adv. Mater. Inter. 2021, 8, 2100705.
21. Liu, Z.; Na, G.; Tian, F.; Yu, L.; Li, J.; Zhang, L. Computational functionality-driven design of semiconductors for optoelectronic applications. InfoMat 2020, 2, 879-904.
22. Khan, D.; Qu, G.; Muhammad, I.; Tang, Z.; Xu, Z. Overcoming two key challenges in monolithic perovskite-silicon tandem solar cell development: wide bandgap and textured substrate - a comprehensive review. Adv. Energy. Mater. 2023, 13, 2302124.
23. Zhang, C. Z.; Fu, X. Q. Applications and potentials of machine learning in optoelectronic materials research: an overview and perspectives. Chinese. Phys. B. 2023, 32, 126103.
24. Hu, Y.; Chen, J.; Wei, Z.; He, Q.; Zhao, Y. Recent advances and applications of machine learning in electrocatalysis. J. Mater. Inf. 2023, 3, 18.
25. Yuan, J.; Li, Z.; Yang, Y.; et al. Applications of machine learning method in high-performance materials design: a review. J. Mater. Inf. 2024, 4, 14.
26. Liu, Y.; Zhao, T.; Ju, W.; Shi, S. Materials discovery and design using machine learning. J. Materiomics. 2017, 3, 159-77.
27. Yang, X.; Zhou, K.; He, X.; Zhang, L. Methods and applications of machine learning in computational design of optoelectronic semiconductors. Sci. China. Mater. 2024, 67, 1042-81.
28. Himanen, L.; Geurts, A.; Foster, A. S.; Rinke, P. Data-driven materials science: status, challenges, and perspectives. Adv. Sci. 2019, 6, 1900808.
29. Brunton, S. L.; Kutz, J. N. Data-driven science and engineering: machine learning, dynamical systems, and control. Cambridge University Press: 2019.
30. Chen, Z.; Yang, Y. Data-driven design of eutectic high entropy alloys. J. Mater. Inf. 2023, 3, 10.
31. Chen, M.; Yin, Z.; Shan, Z.; et al. Application of machine learning in perovskite materials and devices: a review. J. Energy. Chem. 2024, 94, 254-72.
32. He, H.; Wang, Y.; Qi, Y.; Xu, Z.; Li, Y.; Wang, Y. From prediction to design: recent advances in machine learning for the study of 2D materials. Nano. Energy. 2023, 118, 108965.
33. Chen, J.; Feng, M.; Zha, C.; Shao, C.; Zhang, L.; Wang, L. Machine learning-driven design of promising perovskites for photovoltaic applications: a review. Surf. Interfaces. 2022, 35, 102470.
34. Nematov, D.; Hojamberdiev, M. Machine learning - driven materials discovery: unlocking next-generation functional materials - a minireview. arXiv 2025, arXiv:2503.18975. https://doi.org/10.48550/arXiv.2503.18975. (accessed 27 May 2025).
35. Li, Y.; Yang, K. High-throughput computational design of halide perovskites and beyond for optoelectronics. WIREs. Comput. Mol. Sci. 2021, 11, e1500.
36. Shen, L.; Zhou, J.; Yang, T.; Yang, M.; Feng, Y. P. High-throughput computational discovery and intelligent design of two-dimensional functional materials for various applications. Acc. Mater. Res. 2022, 3, 572-83.
37. Xu, D.; Zhang, Q.; Huo, X.; Wang, Y.; Yang, M. Advances in data-assisted high-throughput computations for material design. MGE. Adv. 2023, 1, e11.
38. Gan, Y.; Miao, N.; Lan, P.; Zhou, J.; Elliott, S. R.; Sun, Z. Robust design of high-performance optoelectronic chalcogenide crystals from high-throughput computation. J. Am. Chem. Soc. 2022, 144, 5878-86.
39. Lan, P.; Miao, N.; Gan, Y.; et al. High-throughput computational design of 2D ternary chalcogenides for sustainable energy. J. Phys. Chem. Lett. 2023, 14, 10489-98.
40. Bai, S.; Zhang, X.; Zhao, L. D. Rethinking SnSe thermoelectrics from computational materials science. Acc. Chem. Res. 2023, 56, 3065-75.
41. Deng, T.; Qiu, P.; Yin, T.; et al. High-throughput strategies in the discovery of thermoelectric materials. Adv. Mater. 2024, 36, e2311278.
42. Xu, Y.; Elcoro, L.; Song, Z. D.; et al. High-throughput calculations of magnetic topological materials. Nature 2020, 586, 702-7.
43. Cao, G.; Ouyang, R.; Ghiringhelli, L. M.; et al. Artificial intelligence for high-throughput discovery of topological insulators: the example of alloyed tetradymites. Phys. Rev. Mater. 2020, 4, 034204.
44. Zhang, X.; Meng, W.; Liu, Y.; Dai, X.; Liu, G.; Kou, L. Magnetic electrides: high-throughput material screening, intriguing properties, and applications. J. Am. Chem. Soc. 2023, 145, 5523-35.
45. Miao, N.; Sun, Z. Computational design of two-dimensional magnetic materials. WIREs. Comput. Mol. Sci. 2022, 12, e1545.
46. de Pablo, J. J.; Jackson, N. E.; Webb, M. A.; et al. New frontiers for the materials genome initiative. npj. Comput. Mater. 2019, 5, 173.
47. de Pablo, J. J.; Jones, B.; Kovacs, C. L.; Ozolins, V.; Ramirez, A. P. The Materials Genome Initiative, the interplay of experiment, theory and computation. Curr. Opin. Solid. State. Mater. Sci. 2014, 18, 99-117.
48. Yu, Q.; Ma, N.; Leung, C.; Liu, H.; Ren, Y.; Wei, Z. AI in single-atom catalysts: a review of design and applications. J. Mater. Inf. 2025, 5, 9.
49. Jordan, M. I.; Mitchell, T. M. Machine learning: trends, perspectives, and prospects. Science 2015, 349, 255-60.
50. Xu, P.; Ji, X.; Li, M.; Lu, W. Small data machine learning in materials science. npj. Comput. Mater. 2023, 9, 1000.
51. Butler, K. T.; Davies, D. W.; Cartwright, H.; Isayev, O.; Walsh, A. Machine learning for molecular and materials science. Nature 2018, 559, 547-55.
52. Schleder, G. R.; Padilha, A. C. M.; Acosta, C. M.; Costa, M.; Fazzio, A. From DFT to machine learning: recent approaches to materials science - a review. J. Phys. Mater. 2019, 2, 032001.
53. Jacobsson, T. J.; Hultqvist, A.; García-Fernández, A.; et al. An open-access database and analysis tool for perovskite solar cells based on the FAIR data principles. Nat. Energy. 2022, 7, 107-15.
54. Mannodi-Kanakkithodi, A.; Chan, M. K. Y. Data-driven design of novel halide perovskite alloys. Energy. Environ. Sci. 2022, 15, 1930-49.
55. Ma, B.; Wu, X.; Zhao, C.; et al. An interpretable machine learning strategy for pursuing high piezoelectric coefficients in (K0.5Na0.5)NbO3-based ceramics. npj. Comput. Mater. 2023, 9, 1187.
56. Cheng, G.; Gong, X. G.; Yin, W. J. Crystal structure prediction by combining graph network and optimization algorithm. Nat. Commun. 2022, 13, 1492.
57. Chen, C.; Zuo, Y.; Ye, W.; Li, X.; Deng, Z.; Ong, S. P. A critical review of machine learning of energy materials. Adv. Energy. Mater. 2020, 10, 1903242.
58. Groom, C. R.; Bruno, I. J.; Lightfoot, M. P.; Ward, S. C. The Cambridge Structural Database. Acta. Crystallogr. B. Struct. Sci. Cryst. Eng. Mater. 2016, 72, 171-9.
59. Bergerhoff, G.; Hundt, R.; Sievers, R.; Brown, I. D. The inorganic crystal structure data base. J. Chem. Inf. Comput. Sci. 1983, 23, 66-9.
60. Gražulis, S.; Daškevič, A.; Merkys, A.; et al. Crystallography Open Database (COD): an open-access collection of crystal structures and platform for world-wide collaboration. Nucleic. Acids. Res. 2012, 40, D420-7.
61. Curtarolo, S.; Setyawan, W.; Wang, S.; et al. AFLOWLIB.ORG: a distributed materials properties repository from high-throughput ab initio calculations. Comput. Mater. Sci. 2012, 58, 227-35.
62. Jain, A.; Ong, S. P.; Hautier, G.; et al. Commentary: The Materials Project: a materials genome approach to accelerating materials innovation. APL. Mater. 2013, 1, 011002.
63. Gjerding, M. N.; Taghizadeh, A.; Rasmussen, A.; et al. Recent progress of the Computational 2D Materials Database (C2DB). 2D. Mater. 2021, 8, 044002.
64. Kirklin, S.; Saal, J. E.; Meredig, B.; et al. The Open Quantum Materials Database (OQMD): assessing the accuracy of DFT formation energies. npj. Comput. Mater. 2015, 1, BFnpjcompumats201510.
65. Damewood, J.; Karaguesian, J.; Lunger, J. R.; et al. Representations of materials for machine learning. Annu. Rev. Mater. Res. 2023, 53, 399-426.
66. Li, S.; Liu, Y.; Chen, D.; Jiang, Y.; Nie, Z.; Pan, F. Encoding the atomic structure for machine learning in materials science. WIREs. Comput. Mol. Sci. 2022, 12, e1558.
67. Oh, S. H. V.; Hwang, W.; Kim, K.; Lee, J. H.; Soon, A. Using feature-assisted machine learning algorithms to boost polarity in lead-free multicomponent niobate alloys for high-performance ferroelectrics. Adv. Sci. 2022, 9, e2104569.
68. Schmidt, J.; Marques, M. R. G.; Botti, S.; Marques, M. A. L. Recent advances and applications of machine learning in solid-state materials science. npj. Comput. Mater. 2019, 5, 221.
69. Li, J.; Cheng, K.; Wang, S.; et al. Feature selection: a data perspective. ACM. Comput. Surv. 2018, 50, 1-45.
70. Hsu, H.; Hsieh, C.; Lu, M. Hybrid feature selection by combining filters and wrappers. Expert. Syst. Appl. 2011, 38, 8144-50.
71. Rodriguez-Galiano, V. F.; Luque-Espinar, J. A.; Chica-Olmo, M.; Mendes, M. P. Feature selection approaches for predictive modelling of groundwater nitrate pollution: an evaluation of filters, embedded and wrapper methods. Sci. Total. Environ. 2018, 624, 661-72.
72. Liu, H.; Zhou, M.; Liu, Q. An embedded feature selection method for imbalanced data classification. IEEE/CAA. J. Autom. Sinica. 2019, 6, 703-15.
73. Zhang, Z.; Liu, S.; Xiong, Q.; Liu, Y. Strategic integration of machine learning in the design of excellent hybrid perovskite solar cells. J. Phys. Chem. Lett. 2025, 16, 738-46.
74. Gladkikh, V.; Kim, D. Y.; Hajibabaei, A.; Jana, A.; Myung, C. W.; Kim, K. S. Machine learning for predicting the band gaps of ABX3 perovskites from elemental properties. J. Phys. Chem. C. 2020, 124, 8905-18.
75. Gou, F.; Ma, Z.; Yang, Q.; et al. Machine learning-assisted prediction and control of bandgap for organic-inorganic metal halide perovskites. ACS. Appl. Mater. Interfaces. 2025, 17, 18383-93.
76. Wang, A. Y.; Murdock, R. J.; Kauwe, S. K.; et al. Machine learning for materials scientists: an introductory guide toward best practices. Chem. Mater. 2020, 32, 4954-65.
77. Wei, J.; Chu, X.; Sun, X.; et al. Machine learning in materials science. InfoMat 2019, 1, 338-58.
78. Orupattur, N. V.; Mushrif, S. H.; Prasad, V. Catalytic materials and chemistry development using a synergistic combination of machine learning and ab initio methods. Comput. Mater. Sci. 2020, 174, 109474.
79. Ali, Y.; Awwad, E.; Al-Razgan, M.; Maarouf, A. Hyperparameter search for machine learning algorithms for optimizing the computational complexity. Processes 2023, 11, 349.
80. Cherkassky, V.; Ma, Y. Practical selection of SVM parameters and noise estimation for SVM regression. Neural. Netw. 2004, 17, 113-26.
81. Cover, T.; Hart, P. Nearest neighbor pattern classification. IEEE. Trans. Inform. Theory. 1967, 13, 21-7.
82. Yang, F. J. An implementation of Naive Bayes Classifier. In 2018 International Conference on Computational Science and Computational Intelligence (CSCI), Las Vegas, USA. Dec 12-14, 2018. IEEE; 2018; pp. 301-6.
83. Liu, Y.; Zhou, Q.; Cui, G. Machine learning boosting the development of advanced lithium batteries. Small. Methods. 2021, 5, e2100442.
84. Dong, X.; Yu, Z.; Cao, W.; Shi, Y.; Ma, Q. A survey on ensemble learning. Front. Comput. Sci. 2020, 14, 241-58.
85. Sagi, O.; Rokach, L. Ensemble learning: a survey. WIREs. Data. Min. Knowl. 2018, 8, e1249.
87. Freund, Y.; Schapire, R. E. Experiments with a new boosting algorithm. In Proceedings of the Thirteenth International Conference, 1996. pp. 148-56. http://www.jstor.org/stable/2699986. (accessed 27 May 2025).
88. Chen, T.; Guestrin, C. XGBoost: a scalable tree boosting system. In Proceedings of the Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, USA. 2016; pp. 785-94.
89. Pavlyshenko, B. Using stacking approaches for machine learning models. In 2018 IEEE Second International Conference on Data Stream Mining & Processing (DSMP), Lviv, Ukraine, Aug 21-25, 2018. IEEE; 2018. pp. 255-8.
90. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436-44.
91. Liu, J.; Liang, L.; Su, B.; et al. Transformative strategies in photocatalyst design: merging computational methods and deep learning. J. Mater. Inf. 2024, 4, 33.
92. Choudhary, K.; Decost, B.; Chen, C.; et al. Recent advances and applications of deep learning methods in materials science. npj. Comput. Mater. 2022, 8, 734.
93. Jain, A. K.; Mao, J.; Mohiuddin, K. M. Artificial neural networks: a tutorial. Computer 1996, 29, 31-44.
94. Shelhamer, E.; Long, J.; Darrell, T. Fully convolutional networks for semantic segmentation. IEEE. Trans. Pattern. Anal. Mach. Intell. 2017, 39, 640-51.
95. Zhang, H.; Wang, Z.; Liu, D. A comprehensive review of stability analysis of continuous-time recurrent neural networks. IEEE. Trans. Neural. Netw. Learning. Syst. 2014, 25, 1229-62.
97. Zheng, Z.; Zhang, O.; Borgs, C.; Chayes, J. T.; Yaghi, O. M. ChatGPT chemistry assistant for text mining and the prediction of MOF synthesis. J. Am. Chem. Soc. 2023, 145, 18048-62.
99. Chowdhary, K. R. Natural language processing. In: Fundamentals of artificial intelligence. New Delhi: Springer India; 2020. pp. 603-49.
100. Zhu, J. J.; Yang, M.; Ren, Z. J. Machine learning in environmental research: common pitfalls and best practices. Environ. Sci. Technol. 2023, 57, 17671-89.
101. Li, Z.; Yoon, J.; Zhang, R.; et al. Machine learning in concrete science: applications, challenges, and best practices. npj. Comput. Mater. 2022, 8, 810.
102. Artrith, N.; Butler, K. T.; Coudert, F. X.; et al. Best practices in machine learning for chemistry. Nat. Chem. 2021, 13, 505-8.
103. Wong, T. Performance evaluation of classification algorithms by k-fold and leave-one-out cross validation. Pattern. Recognit. 2015, 48, 2839-46.
105. Palanivinayagam, A.; El-Bayeh, C. Z.; Damaševičius, R. Twenty years of machine-learning-based text classification: a systematic review. Algorithms 2023, 16, 236.
106. Sebastiani, F. Machine learning in automated text categorization. ACM. Comput. Surv. 2002, 34, 1-47.
107. Chicco, D.; Jurman, G. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC. Genomics. 2020, 21, 6.
108. Ho, S. Y.; Phua, K.; Wong, L.; Bin, Goh., W. W. Extensions of the external validation for checking learned model interpretability and generalizability. Patterns 2020, 1, 100129.
109. Xiong, Z.; Cui, Y.; Liu, Z.; Zhao, Y.; Hu, M.; Hu, J. Evaluating explorative prediction power of machine learning algorithms for materials discovery using k-fold forward cross-validation. Comput. Mater. Sci. 2020, 171, 109203.
110. Probst, P.; Bischl, B.; Boulesteix, A. L. Tunability: importance of hyperparameters of machine learning algorithms. arXiv 2018, arXiv:1802.09596. https://doi.org/10.48550/arXiv.1802.09596. (accessed 27 May 2025).
111. Bischl, B.; Binder, M.; Lang, M.; et al. Hyperparameter optimization: foundations, algorithms, best practices, and open challenges. WIREs. Data. Min. Knowl. 2023, 13, e1484.
112. Li, L.; Jamieson, K.; DeSalvo, G.; Rostamizadeh, A.; Talwalkar, A. Hyperband: a novel bandit-based approach to hyperparameter optimization. arXiv 2016, arXiv:1603.06560. https://doi.org/10.48550/arXiv.1603.06560. (accessed 27 May 2025).
113. Victoria, A. H.; Maragatham, G. Automatic tuning of hyperparameters using Bayesian optimization. Evol. Syst. 2021, 12, 217-23.
114. Sa, B.; Hu, R.; Zheng, Z.; et al. High-throughput computational screening and machine learning modeling of Janus 2D III-VI van der Waals heterostructures for solar energy applications. Chem. Mater. 2022, 34, 6687-701.
115. Mooraj, S.; Chen, W. A review on high-throughput development of high-entropy alloys by combinatorial methods. J. Mater. Inf. 2023, 3, 4.
116. Sa, Z.; Liu, F.; Zhuang, X.; et al. Toward high bias-stress stability P-type GaSb nanowire field-effect-transistor for gate-controlled near-infrared photodetection and photocommunication. Adv. Funct. Mater. 2023, 33, 2304064.
117. Kang, Y.; Hou, X.; Zhang, Z.; et al. Ultrahigh-performance and broadband photodetector from visible to shortwave infrared band based on GaAsSb nanowires. Chem. Eng. J. 2024, 501, 157392.
118. Kang, Y.; Hou, X.; Zhang, Z.; et al. Enhanced visible-NIR dual-band performance of GaAs nanowire photodetectors through phase manipulation. Adv. Opt. Mater. , 2025, 2500289.
119. Li, D.; Lan, C.; Manikandan, A.; et al. Ultra-fast photodetectors based on high-mobility indium gallium antimonide nanowires. Nat. Commun. 2019, 10, 1664.
120. Gao, Y.; Zhang, Q.; Hu, W.; Yang, J. First-principles computational screening of two-dimensional polar materials for photocatalytic water splitting. ACS. Nano. 2024, 18, 19381-90.
121. Kangsabanik, J.; Svendsen, M. K.; Taghizadeh, A.; Crovetto, A.; Thygesen, K. S. Indirect band gap semiconductors for thin-film photovoltaics: high-throughput calculation of phonon-assisted absorption. J. Am. Chem. Soc. 2022, 144, 19872-83.
122. Jiang, X.; Yin, W. High-throughput computational screening of oxide double perovskites for optoelectronic and photocatalysis applications. J. Energy. Chem. 2021, 57, 351-8.
123. Tang, J.; Xue, J.; Xu, H.; et al. Power generation density boost of bifacial tandem solar cells revealed by high throughput optoelectrical modelling. Energy. Environ. Sci. 2024, 17, 6068-78.
124. Xie, T.; Grossman, J. C. Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties. Phys. Rev. Lett. 2018, 120, 145301.
125. Liang, C.; Rouzhahong, Y.; Ye, C.; Li, C.; Wang, B.; Li, H. Material symmetry recognition and property prediction accomplished by crystal capsule representation. Nat. Commun. 2023, 14, 5198.
126. Mannodi-Kanakkithodi, A.; Toriyama, M. Y.; Sen, F. G.; Davis, M. J.; Klie, R. F.; Chan, M. K. Y. Machine-learned impurity level prediction for semiconductors: the example of Cd-based chalcogenides. npj. Comput. Mater. 2020, 6, 296.
127. Wang, H.; Ouyang, R.; Chen, W.; Pasquarello, A. High-quality data enabling universality of band gap descriptor and discovery of photovoltaic perovskites. J. Am. Chem. Soc. 2024, 146, 17636-45.
128. Kim, J.; Noh, J.; Im, J. Machine learning-enabled chemical space exploration of all-inorganic perovskites for photovoltaics. npj. Comput. Mater. 2024, 10, 1270.
129. Mahal, E.; Roy, D.; Manna, S. S.; Pathak, B. Machine learning-driven prediction of band-alignment types in 2D hybrid perovskites. J. Mater. Chem. A. 2023, 11, 23547-55.
130. Nayak, P. K.; Mora Perez, C.; Liu, D.; Prezhdo, O. V.; Ghosh, D. A-cation-dependent excited state charge carrier dynamics in vacancy-ordered halide perovskites: insights from computational and machine learning models. Chem. Mater. 2024, 36, 3875-85.
131. Wang, S.; Yousefi Amin, A. A.; Wu, L.; Cao, M.; Zhang, Q.; Ameri, T. Perovskite nanocrystals: synthesis, stability, and optoelectronic applications. Small. Struct. 2021, 2, 2000124.
132. Liu, J.; Yang, Z.; Ye, B.; et al. A review of stability-enhanced luminescent materials: fabrication and optoelectronic applications. J. Mater. Chem. C. 2019, 7, 4934-55.
133. Liu, H.; Cheng, J.; Dong, H.; et al. Screening stable and metastable ABO3 perovskites using machine learning and the materials project. Comput. Mater. Sci. 2020, 177, 109614.
134. Burlingame, Q.; Ball, M.; Loo, Y. It’s time to focus on organic solar cell stability. Nat. Energy. 2020, 5, 947-9.
135. Bartel, C. J.; Sutton, C.; Goldsmith, B. R.; et al. New tolerance factor to predict the stability of perovskite oxides and halides. Sci. Adv. 2019, 5, eaav0693.
136. Gu, G. H.; Jang, J.; Noh, J.; Walsh, A.; Jung, Y. Perovskite synthesizability using graph neural networks. npj. Comput. Mater. 2022, 8, 757.
137. Fu, Y.; Zhu, H.; Chen, J.; Hautzinger, M. P.; Zhu, X.; Jin, S. Metal halide perovskite nanostructures for optoelectronic applications and the study of physical properties. Nat. Rev. Mater. 2019, 4, 169-88.
138. Li, J.; Duan, J.; Yang, X.; Duan, Y.; Yang, P.; Tang, Q. Review on recent progress of lead-free halide perovskites in optoelectronic applications. Nano. Energy. 2021, 80, 105526.
139. Cai, X.; Li, Y.; Liu, J.; Zhang, H.; Pan, J.; Zhan, Y. Discovery of all-inorganic lead-free perovskites with high photovoltaic performance via ensemble machine learning. Mater. Horiz. 2023, 10, 5288-97.
140. Liu, Z.; Rolston, N.; Flick, A. C.; et al. Machine learning with knowledge constraints for process optimization of open-air perovskite solar cell manufacturing. Joule 2022, 6, 834-49.
141. Chen, T.; Pang, Z.; He, S.; et al. Machine intelligence-accelerated discovery of all-natural plastic substitutes. Nat. Nanotechnol. 2024, 19, 782-91.
142. Mai, H.; Le, T. C.; Chen, D.; Winkler, D. A.; Caruso, R. A. Machine learning for electrocatalyst and photocatalyst design and discovery. Chem. Rev. 2022, 122, 13478-515.
143. Osman, A. I.; Nasr, M.; Eltaweil, A. S.; et al. Advances in hydrogen storage materials: harnessing innovative technology, from machine learning to computational chemistry, for energy storage solutions. Int. J. Hydrogen. Energy. 2024, 67, 1270-94.
144. Ma, X. Y.; Lewis, J. P.; Yan, Q. B.; Su, G. Accelerated discovery of two-dimensional optoelectronic octahedral oxyhalides via high-throughput ab initio calculations and machine learning. J. Phys. Chem. Lett. 2019, 10, 6734-40.
145. Jin, H.; Zhang, H.; Li, J.; et al. Discovery of novel two-dimensional photovoltaic materials accelerated by machine learning. J. Phys. Chem. Lett. 2020, 11, 3075-81.
146. Wang, Z.; Zhang, H.; Li, J. Accelerated discovery of stable spinels in energy systems via machine learning. Nano. Energy. 2021, 81, 105665.
147. Alibagheri, E.; Ranjbar, A.; Khazaei, M.; Kühne, T. D.; Vaez Allaei, S. M. Remarkable optoelectronic characteristics of synthesizable square-octagon haeckelite structures: machine learning materials discovery. Adv. Funct. Mater. 2024, 34, 2402390.
148. Li, Y.; Yang, J.; Zhao, R.; et al. Design of organic-inorganic hybrid heterostructured semiconductors via high-throughput materials screening for optoelectronic applications. J. Am. Chem. Soc. 2022, 144, 16656-66.
149. Chen, J.; Xu, W.; Zhang, R. Δ-Machine learning-driven discovery of double hybrid organic-inorganic perovskites. J. Mater. Chem. A. 2022, 10, 1402-13.
150. Chen, A.; Wang, Z.; Gao, J.; et al. A data-driven platform for two-dimensional hybrid lead-halide perovskites. ACS. Nano. 2023, 17, 13348-57.
151. Liu, Y.; Madanchi, A.; Anker, A. S.; Simine, L.; Deringer, V. L. The amorphous state as a frontier in computational materials design. Nat. Rev. Mater. 2025, 10, 228-41.
152. Merchant, A.; Batzner, S.; Schoenholz, S. S.; Aykol, M.; Cheon, G.; Cubuk, E. D. Scaling deep learning for materials discovery. Nature 2023, 624, 80-5.
153. Szymanski, N. J.; Rendy, B.; Fei, Y.; et al. An autonomous laboratory for the accelerated synthesis of novel materials. Nature 2023, 624, 86-91.
154. Zeni, C.; Pinsler, R.; Zügner, D.; et al. A generative model for inorganic materials design. Nature 2025, 639, 624-32.
155. Wu, J.; Torresi, L.; Hu, M.; et al. Inverse design workflow discovers hole-transport materials tailored for perovskite solar cells. Science 2024, 386, 1256-64.
156. Lu, J. M.; Wang, H. F.; Guo, Q. H.; et al. Roboticized AI-assisted microfluidic photocatalytic synthesis and screening up to 10,000 reactions per day. Nat. Commun. 2024, 15, 8826.
157. Zhang, J.; Hauch, J. A.; Brabec, C. J. Toward self-driven autonomous material and device acceleration platforms (AMADAP) for emerging photovoltaics technologies. Acc. Chem. Res. 2024, 57, 1434-45.
Comments
Comments must be written in English. Spam, offensive content, impersonation, and private information will not be permitted. If any comment is reported and identified as inappropriate content by OAE staff, the comment will be removed without notice. If you have any queries or need any help, please contact us at support@oaepublish.com.