1. Deng, Y. L.; Zhang, X. M. Development of aluminum and aluminum alloy. Chin. J. Nonferrous. Met. 2019, 29, 2115-41.
2. Khalid, M. Y.; Umer, R.; Khan, K. A. Review of recent trends and developments in aluminium 7075 alloy and its metal matrix composites (MMCs) for aircraft applications. Results. Eng. 2023, 20, 101372.
3. Gao, Y.; Liu, G.; Sun, J. Recent progress in high-temperature resistant aluminum-based alloys: microstructural design and precipitation strategy. Acta. Metall. Sin. 2021, 57, 129-49.
4. Bai, X.; Xie, H.; Zhang, X.; et al. Heat-resistant super-dispersed oxide strengthened aluminium alloys. Nat. Mater. 2024, 23, 747-54.
5. Dong, Z.; Liu, X.; Wang, D.; Wang, W.; Xiao, B.; Ma, Z. Effect of nano-SiC coating on the thermal properties and microstructure of diamond/Al composites. Compos. Commun. 2023, 40, 101564.
6. Cao, L.; Chen, B.; Wan, J.; et al. Superior high-temperature tensile properties of aluminum matrix composites reinforced with carbon nanotubes. Carbon 2022, 191, 403-14.
7. Balog, M.; Krizik, P.; Yan, M.; Simancik, F.; Schaffer, G.; Qian, M. SAP-like ultrafine-grained Al composites dispersion strengthened with nanometric AlN. Mater. Sci. Eng. A. 2013, 588, 181-7.
8. Zhao, K.; Zhu, X.; Liu, J.; et al. Superb high-temperature strength of aluminum-based nanocomposite with supra-nano stacking faults/twins. Compos. Commun. 2021, 25, 100753.
9. Gao, T.; Liu, L.; Li, M.; Sun, Y.; Wu, Y.; Liu, X. Design of Al based composites reinforced with in-situ Al2O3, AlB2 and Al13Fe4 particles. Compos. Commun. 2023, 40, 101629.
10. Xie, K.; Nie, J.; Hu, K.; Ma, X.; Liu, X. Improvement of high-temperature strength of 6061 Al matrix composite reinforced by dual-phased nano-AlN and submicron-Al2O3 particles. Trans. Nonferrous. Met. Soc. China. 2022, 32, 3197-211.
11. Zhao, K.; Cao, B.; Liu, J.; Wang, Y.; An, L. In-situ synthesis of Al76.8Fe24 complex metallic alloy phase in Al-based hybrid composite. J. Mater. Sci. Technol. 2017, 33, 1177-81.
12. Zhang, S.; Zhang, H.; Liu, X.; et al. Thermal deformation behavior investigation of Ti–10V–5Al-2.5fe-0.1B titanium alloy based on phenomenological constitutive models and a machine learning method. J. Mater. Res. Technol. 2024, 29, 589-608.
13. Wu, B.; Li, M.; Ma, D. The flow behavior and constitutive equations in isothermal compression of 7050 aluminum alloy. Mater. Sci. Eng. A. 2012, 542, 79-87.
14. Chen, S.; Teng, J.; Luo, H.; Wang, Y.; Zhang, H. Hot deformation characteristics and mechanism of PM 8009Al/SiC particle reinforced composites. Mater. Sci. Eng. A. 2017, 697, 194-202.
15. Xiao, B.; Huang, Z.; Ma, K.; Zhang, X.; Ma, Z. Research on hot deformation behaviors of discontinuously reinforced aluminum composites. Acta. Metall. Sin. 2019, 55, 59-72.
17. Bodner, S. R.; Partom, Y. Constitutive equations for elastic-viscoplastic strain-hardening materials. J. Appl. Mech. 1975, 42, 385-9.
19. Khan, A. S.; Huang, S. Experimental and theoretical study of mechanical behavior of 1100 aluminum in the strain rate range 10-5-104s-1. Int. J. Plast. 1992, 8, 397-424.
20. Zerilli, F. J. Dislocation mechanics-based constitutive equations. Metall. Mater. Trans. A. 2004, 35, 2547-55.
21. Follansbee, P.; Kocks, U. A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable. Acta. Metall. 1988, 36, 81-93.
22. Sellars, C.; Mctegart, W. On the mechanism of hot deformation. Acta. Metall. 1966, 14, 1136-8.
23. Karimzadeh, M.; Malekan, M.; Mirzadeh, H.; Saini, N.; Li, L. Hot deformation behavior analysis of as-cast CoCrFeNi high entropy alloy using Arrhenius-type and artificial neural network models. Intermetallics 2024, 168, 108240.
24. Moghadam, N. N.; Serajzadeh, S. Warm and hot deformation behaviors and hot workability of an aluminum-magnesium alloy using artificial neural network. Mater. Today. Commun. 2023, 35, 105986.
25. Zhang, M.; Chen, D.; Liu, H.; et al. Research on hot deformation behavior of Cu-Ti alloy based on machine learning algorithms and microalloying. Mater. Today. Commun. 2024, 39, 108783.
26. Bai, M.; Wu, X.; Tang, S.; et al. Study on hot deformation behavior and recrystallization mechanism of an Al-6.3Zn-2.5Mg-2.6Cu-0.11Zr alloy based on machine learning. J. Alloys. Compd. 2024, 1000, 175086.
27. Lu, Z.; Pan, Q.; Liu, X.; Qin, Y.; He, Y.; Cao, S. Artificial neural network prediction to the hot compressive deformation behavior of Al–Cu–Mg–Ag heat-resistant aluminum alloy. Mech. Res. Commun. 2011, 38, 192-7.
28. Ashtiani, H. R.; Shahsavari, P. A comparative study on the phenomenological and artificial neural network models to predict hot deformation behavior of AlCuMgPb alloy. J. Alloys. Compd. 2016, 687, 263-73.
29. Yan, J.; Pan, Q.; Li, A.; Song, W. Flow behavior of Al–6.2Zn–0.70Mg–0.30Mn–0.17Zr alloy during hot compressive deformation based on Arrhenius and ANN models. Trans. Nonferrous. Met. Soc. China. 2017, 27, 638-47.
30. Lin, X.; Wu, X.; Cao, L.; Bai, M.; Meng, Y. Optimization of flow stress model and 3D-processing map for spray-formed aluminum alloy 7055 based on GA-BP artificial neural network. J. Alloys. Compd. 2025, 1021, 179743.
31. Liu, X.; Zhang, H.; Zhang, S.; et al. Hot deformation behavior of near-β titanium alloy Ti-3Mo-6Cr-3Al-3Sn based on phenomenological constitutive model and machine learning algorithm. J. Alloys. Compd. 2023, 968, 172052.
32. Wan, P.; Zou, H.; Wang, K.; Zhao, Z. Hot deformation characterization of Ti–Nb alloy based on GA-LSSVM and 3D processing map. J. Mater. Res. Technol. 2021, 13, 1083-97.
33. Huang, Z.; Li, X.; Chen, J.; Jiang, L.; Chen, Y. F.; Huang, Y. Study on hysteresis performance of four-limb CFST latticed column-box girder joints based on GA-BP neural network. Structures 2024, 67, 107007.
34. Zhu, Y.; Cao, Y.; Liu, C.; et al. Dynamic behavior and modified artificial neural network model for predicting flow stress during hot deformation of Alloy 925. Mater. Today. Commun. 2020, 25, 101329.
35. Zener, C.; Hollomon, J. H. Effect of strain rate upon plastic flow of steel. J. Appl. Phys. 1944, 15, 22-32.
36. Prasad, Y. Processing maps: a status report. J. Mater. Eng. Perform. 2003, 12, 638-45.
37. Prasad, Y. V. R. K.; Gegel, H. L.; Doraivelu, S. M.; et al. Modeling of dynamic material behavior in hot deformation: forging of Ti-6242. Metall. Trans. A. 1984, 15, 1883-92.
38. Behnood, N.; Evans, J. Plastic deformation and the flow stress of aluminium-lithium alloys. Acta. Metall. 1989, 37, 687-95.
39. Wu, R.; Liu, Y.; Geng, C.; et al. Study on hot deformation behavior and intrinsic workability of 6063 aluminum alloys using 3D processing map. J. Alloys. Compd. 2017, 713, 212-21.
40. Shen, T.; Fan, C.; Hu, Z.; Wu, Q.; Ni, Y.; Chen, Y. Effect of strain rate on microstructure and mechanical properties of spray-formed Al–Cu–Mg alloy. Trans. Nonferrous. Met. Soc. China. 2022, 32, 1096-104.
41. Wang, Y.; Zhao, G.; Sun, L.; Wang, X. Effects of strain and strain rate on dynamic recrystallization and solid-state welding behaviors of aluminum alloys. J. Mater. Res. Technol. 2024, 29, 4036-51.
42. Pan, R.; Tang, W.; Han, P.; et al. Dynamic mechanical properties and microstructure evolution of high-entropy alloy Al0.3CoCrFeNi: effects of strain rate, temperature and B2 precipitates. Mater. Sci. Eng. A. 2025, 927, 147981.
43. Wang, X.; Shi, T.; Wang, H.; Zhou, S.; Peng, W.; Wang, Y. Effects of strain rate on mechanical properties, microstructure and texture of Al-Mg-Si-Cu alloy under tensile loading. Trans. Nonferrous. Met. Soc. China. 2020, 30, 27-40.
44. Bhatti, T. M.; Wang, Y.; Jamal, S.; Baig, M. M. A. B.; Shehzadi, F. Microstructure evolution and mechanical response of hetero-induced SiCp addition in Al-6061 under high strain rate compressive loading. J. Mater. Res. Technol. 2024, 33, 1999-2013.
Comments
Comments must be written in English. Spam, offensive content, impersonation, and private information will not be permitted. If any comment is reported and identified as inappropriate content by OAE staff, the comment will be removed without notice. If you have any queries or need any help, please contact us at support@oaepublish.com.