REFERENCES

1. Deng, Y. L.; Zhang, X. M. Development of aluminum and aluminum alloy. Chin. J. Nonferrous. Met. 2019, 29, 2115-41.

2. Khalid, M. Y.; Umer, R.; Khan, K. A. Review of recent trends and developments in aluminium 7075 alloy and its metal matrix composites (MMCs) for aircraft applications. Results. Eng. 2023, 20, 101372.

3. Gao, Y.; Liu, G.; Sun, J. Recent progress in high-temperature resistant aluminum-based alloys: microstructural design and precipitation strategy. Acta. Metall. Sin. 2021, 57, 129-49.

4. Bai, X.; Xie, H.; Zhang, X.; et al. Heat-resistant super-dispersed oxide strengthened aluminium alloys. Nat. Mater. 2024, 23, 747-54.

5. Dong, Z.; Liu, X.; Wang, D.; Wang, W.; Xiao, B.; Ma, Z. Effect of nano-SiC coating on the thermal properties and microstructure of diamond/Al composites. Compos. Commun. 2023, 40, 101564.

6. Cao, L.; Chen, B.; Wan, J.; et al. Superior high-temperature tensile properties of aluminum matrix composites reinforced with carbon nanotubes. Carbon 2022, 191, 403-14.

7. Balog, M.; Krizik, P.; Yan, M.; Simancik, F.; Schaffer, G.; Qian, M. SAP-like ultrafine-grained Al composites dispersion strengthened with nanometric AlN. Mater. Sci. Eng. A. 2013, 588, 181-7.

8. Zhao, K.; Zhu, X.; Liu, J.; et al. Superb high-temperature strength of aluminum-based nanocomposite with supra-nano stacking faults/twins. Compos. Commun. 2021, 25, 100753.

9. Gao, T.; Liu, L.; Li, M.; Sun, Y.; Wu, Y.; Liu, X. Design of Al based composites reinforced with in-situ Al2O3, AlB2 and Al13Fe4 particles. Compos. Commun. 2023, 40, 101629.

10. Xie, K.; Nie, J.; Hu, K.; Ma, X.; Liu, X. Improvement of high-temperature strength of 6061 Al matrix composite reinforced by dual-phased nano-AlN and submicron-Al2O3 particles. Trans. Nonferrous. Met. Soc. China. 2022, 32, 3197-211.

11. Zhao, K.; Cao, B.; Liu, J.; Wang, Y.; An, L. In-situ synthesis of Al76.8Fe24 complex metallic alloy phase in Al-based hybrid composite. J. Mater. Sci. Technol. 2017, 33, 1177-81.

12. Zhang, S.; Zhang, H.; Liu, X.; et al. Thermal deformation behavior investigation of Ti–10V–5Al-2.5fe-0.1B titanium alloy based on phenomenological constitutive models and a machine learning method. J. Mater. Res. Technol. 2024, 29, 589-608.

13. Wu, B.; Li, M.; Ma, D. The flow behavior and constitutive equations in isothermal compression of 7050 aluminum alloy. Mater. Sci. Eng. A. 2012, 542, 79-87.

14. Chen, S.; Teng, J.; Luo, H.; Wang, Y.; Zhang, H. Hot deformation characteristics and mechanism of PM 8009Al/SiC particle reinforced composites. Mater. Sci. Eng. A. 2017, 697, 194-202.

15. Xiao, B.; Huang, Z.; Ma, K.; Zhang, X.; Ma, Z. Research on hot deformation behaviors of discontinuously reinforced aluminum composites. Acta. Metall. Sin. 2019, 55, 59-72.

16. Johnson, G. R.; Cook, W. H. . A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. Eng. Fract. Mech. 1983, 21, 541-8. https://ia800406.us.archive.org/4/items/AConstitutiveModelAndDataForMetals/A%20constitutive%20model%20and%20data%20for%20metals_text.pdf. (accessed on 22 Apr 2025).

17. Bodner, S. R.; Partom, Y. Constitutive equations for elastic-viscoplastic strain-hardening materials. J. Appl. Mech. 1975, 42, 385-9.

18. Fields, D. S.; Backofen, W. A. . Determination of strain hardening characteristics by torsion testing. Proc. Am. Soc. Test. Mater. 1957, 57, 1259-72. https://www.scirp.org/reference/referencespapers?referenceid=1930900. (accessed on 22 Apr 2025).

19. Khan, A. S.; Huang, S. Experimental and theoretical study of mechanical behavior of 1100 aluminum in the strain rate range 10-5-104s-1. Int. J. Plast. 1992, 8, 397-424.

20. Zerilli, F. J. Dislocation mechanics-based constitutive equations. Metall. Mater. Trans. A. 2004, 35, 2547-55.

21. Follansbee, P.; Kocks, U. A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable. Acta. Metall. 1988, 36, 81-93.

22. Sellars, C.; Mctegart, W. On the mechanism of hot deformation. Acta. Metall. 1966, 14, 1136-8.

23. Karimzadeh, M.; Malekan, M.; Mirzadeh, H.; Saini, N.; Li, L. Hot deformation behavior analysis of as-cast CoCrFeNi high entropy alloy using Arrhenius-type and artificial neural network models. Intermetallics 2024, 168, 108240.

24. Moghadam, N. N.; Serajzadeh, S. Warm and hot deformation behaviors and hot workability of an aluminum-magnesium alloy using artificial neural network. Mater. Today. Commun. 2023, 35, 105986.

25. Zhang, M.; Chen, D.; Liu, H.; et al. Research on hot deformation behavior of Cu-Ti alloy based on machine learning algorithms and microalloying. Mater. Today. Commun. 2024, 39, 108783.

26. Bai, M.; Wu, X.; Tang, S.; et al. Study on hot deformation behavior and recrystallization mechanism of an Al-6.3Zn-2.5Mg-2.6Cu-0.11Zr alloy based on machine learning. J. Alloys. Compd. 2024, 1000, 175086.

27. Lu, Z.; Pan, Q.; Liu, X.; Qin, Y.; He, Y.; Cao, S. Artificial neural network prediction to the hot compressive deformation behavior of Al–Cu–Mg–Ag heat-resistant aluminum alloy. Mech. Res. Commun. 2011, 38, 192-7.

28. Ashtiani, H. R.; Shahsavari, P. A comparative study on the phenomenological and artificial neural network models to predict hot deformation behavior of AlCuMgPb alloy. J. Alloys. Compd. 2016, 687, 263-73.

29. Yan, J.; Pan, Q.; Li, A.; Song, W. Flow behavior of Al–6.2Zn–0.70Mg–0.30Mn–0.17Zr alloy during hot compressive deformation based on Arrhenius and ANN models. Trans. Nonferrous. Met. Soc. China. 2017, 27, 638-47.

30. Lin, X.; Wu, X.; Cao, L.; Bai, M.; Meng, Y. Optimization of flow stress model and 3D-processing map for spray-formed aluminum alloy 7055 based on GA-BP artificial neural network. J. Alloys. Compd. 2025, 1021, 179743.

31. Liu, X.; Zhang, H.; Zhang, S.; et al. Hot deformation behavior of near-β titanium alloy Ti-3Mo-6Cr-3Al-3Sn based on phenomenological constitutive model and machine learning algorithm. J. Alloys. Compd. 2023, 968, 172052.

32. Wan, P.; Zou, H.; Wang, K.; Zhao, Z. Hot deformation characterization of Ti–Nb alloy based on GA-LSSVM and 3D processing map. J. Mater. Res. Technol. 2021, 13, 1083-97.

33. Huang, Z.; Li, X.; Chen, J.; Jiang, L.; Chen, Y. F.; Huang, Y. Study on hysteresis performance of four-limb CFST latticed column-box girder joints based on GA-BP neural network. Structures 2024, 67, 107007.

34. Zhu, Y.; Cao, Y.; Liu, C.; et al. Dynamic behavior and modified artificial neural network model for predicting flow stress during hot deformation of Alloy 925. Mater. Today. Commun. 2020, 25, 101329.

35. Zener, C.; Hollomon, J. H. Effect of strain rate upon plastic flow of steel. J. Appl. Phys. 1944, 15, 22-32.

36. Prasad, Y. Processing maps: a status report. J. Mater. Eng. Perform. 2003, 12, 638-45.

37. Prasad, Y. V. R. K.; Gegel, H. L.; Doraivelu, S. M.; et al. Modeling of dynamic material behavior in hot deformation: forging of Ti-6242. Metall. Trans. A. 1984, 15, 1883-92.

38. Behnood, N.; Evans, J. Plastic deformation and the flow stress of aluminium-lithium alloys. Acta. Metall. 1989, 37, 687-95.

39. Wu, R.; Liu, Y.; Geng, C.; et al. Study on hot deformation behavior and intrinsic workability of 6063 aluminum alloys using 3D processing map. J. Alloys. Compd. 2017, 713, 212-21.

40. Shen, T.; Fan, C.; Hu, Z.; Wu, Q.; Ni, Y.; Chen, Y. Effect of strain rate on microstructure and mechanical properties of spray-formed Al–Cu–Mg alloy. Trans. Nonferrous. Met. Soc. China. 2022, 32, 1096-104.

41. Wang, Y.; Zhao, G.; Sun, L.; Wang, X. Effects of strain and strain rate on dynamic recrystallization and solid-state welding behaviors of aluminum alloys. J. Mater. Res. Technol. 2024, 29, 4036-51.

42. Pan, R.; Tang, W.; Han, P.; et al. Dynamic mechanical properties and microstructure evolution of high-entropy alloy Al0.3CoCrFeNi: effects of strain rate, temperature and B2 precipitates. Mater. Sci. Eng. A. 2025, 927, 147981.

43. Wang, X.; Shi, T.; Wang, H.; Zhou, S.; Peng, W.; Wang, Y. Effects of strain rate on mechanical properties, microstructure and texture of Al-Mg-Si-Cu alloy under tensile loading. Trans. Nonferrous. Met. Soc. China. 2020, 30, 27-40.

44. Bhatti, T. M.; Wang, Y.; Jamal, S.; Baig, M. M. A. B.; Shehzadi, F. Microstructure evolution and mechanical response of hetero-induced SiCp addition in Al-6061 under high strain rate compressive loading. J. Mater. Res. Technol. 2024, 33, 1999-2013.

Journal of Materials Informatics
ISSN 2770-372X (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/