1. Yang, L.; Kong, X.; Li, F.; et al. Perovskite lead-free dielectrics for energy storage applications. Prog. Mater. Sci. 2019, 102, 72-108.
2. Palneedi, H.; Peddigari, M.; Hwang, G.; Jeong, D.; Ryu, J. High-performance dielectric ceramic films for energy storage capacitors: progress and outlook. Adv. Funct. Mater. 2018, 28, 1803665.
3. Sun, Z.; Wang, Z.; Tian, Y.; et al. Progress, outlook, and challenges in lead-free energy-storage ferroelectrics. Adv. Elect. Mater. 2020, 6, 1900698.
4. Luo, S.; Yu, J.; Yu, S.; et al. Significantly enhanced electrostatic energy storage performance of flexible polymer composites by introducing highly insulating-ferroelectric microhybrids as fillers. Adv. Energy. Mater. 2019, 9, 1803204.
5. Hao, Y.; Wang, X.; Bi, K.; et al. Significantly enhanced energy storage performance promoted by ultimate sized ferroelectric BaTiO3 fillers in nanocomposite films. Nano. Energy. 2017, 31, 49-56.
6. Zhang, R.; Li, L.; Long, S.; et al. Linear and ferroelectric effects of BaTiO3 particle size on the energy storage performance of composite films with different polymer matrices. Ceram. Int. 2021, 47, 22155-63.
7. Li, H.; Liu, F.; Fan, B.; Ai, D.; Peng, Z.; Wang, Q. Nanostructured ferroelectric-polymer composites for capacitive energy storage. Small. Methods. 2018, 2, 1700399.
8. Guo, M.; Jiang, J.; Shen, Z.; Lin, Y.; Nan, C.; Shen, Y. High-energy-density ferroelectric polymer nanocomposites for capacitive energy storage: enhanced breakdown strength and improved discharge efficiency. Mater. Today. 2019, 29, 49-67.
9. Sun, Y.; Zhang, L.; Huang, Q.; et al. Ultrahigh energy storage density in glassy ferroelectric thin films under low electric field. Adv. Sci. 2022, 9, e2203926.
10. Peddigari, M.; Wang, B.; Wang, R.; et al. Giant energy density via mechanically tailored relaxor ferroelectric behavior of PZT thick film. Adv. Mater. 2023, 35, 2302554.
11. Zhu, M.; Huang, X.; Yang, K.; et al. Energy storage in ferroelectric polymer nanocomposites filled with core-shell structured polymer@BaTiO3 nanoparticles: understanding the role of polymer shells in the interfacial regions. ACS. Appl. Mater. Interfaces. 2014, 6, 19644-54.
12. Wu, L.; Wang, X.; Li, L.; Randall, C. Enhanced energy density in core–shell ferroelectric ceramics: modeling and practical conclusions. J. Am. Ceram. Soc. 2016, 99, 930-7.
13. Yang, F.; Zhao, H.; Zhang, C.; et al. Improved energy storage property of ferroelectric polymer-based sandwiched composites interlayered with graphene oxide @ SiO2 core–shell nanoplatelets. J. Mater. Sci. 2022, 57, 11824-38.
14. Feng, M.; Feng, Y.; Zhang, T.; et al. Recent advances in multilayer-structure dielectrics for energy storage application. Adv. Sci. 2021, 8, 2102221.
15. Wang, G.; Lu, Z.; Li, Y.; et al. Electroceramics for high-energy density capacitors: current status and future perspectives. Chem. Rev. 2021, 121, 6124-72.
16. Sturge, K. M.; Hoppis, N.; Bussio, A. M.; et al. Dynamics of high-speed electrical tree growth in electron-irradiated polymethyl methacrylate. Science 2024, 385, 300-4.
17. Shu, L.; Shi, X.; Zhang, X.; et al. Partitioning polar-slush strategy in relaxors leads to large energy-storage capability. Science 2024, 385, 204-9.
18. Qian, J.; Yu, Z.; Ge, G.; et al. Topological vortex domain engineering for high dielectric energy storage performance. Adv. Energy. Mater. 2024, 14, 2303409.
19. Liu, H.; Zhou, Z.; Qiu, Y.; et al. An intriguing intermediate state as a bridge between antiferroelectric and ferroelectric perovskites. Mater. Horiz. 2020, 7, 1912-8.
20. Wu, L.; Cai, Z.; Zhu, C.; Feng, P.; Li, L.; Wang, X. Significantly enhanced dielectric breakdown strength of ferroelectric energy-storage ceramics via grain size uniformity control: Phase-field simulation and experimental realization. Appl. Phys. Lett. 2020, 117, 212902.
21. Bi, K.; Bi, M.; Hao, Y.; et al. Ultrafine core-shell BaTiO3@SiO2 structures for nanocomposite capacitors with high energy density. Nano. Energy. 2018, 51, 513-23.
22. Chen, B.; Zhu, W.; Wang, T.; et al. Ultrahigh energy storage capacitors based on freestanding single-crystalline antiferroelectric membrane/PVDF composites. Adv. Funct. Mater. 2023, 33, 2302683.
23. Sun, J.; Yang, C.; Song, J.; Zhou, Y.; Yao, Q.; Sun, X. The microstructure, ferroelectric and dielectric behaviors of Na0.5Bi0.5(Ti,Fe)O3 thin films synthesized by chemical solution deposition: effect of precursor solution concentration. Ceram. Int. 2017, 43, 2033-8.
24. Yang, B. B.; Guo, M. Y.; Song, D. P.; et al. Bi3.25La0.75Ti3O12 thin film capacitors for energy storage applications. Appl. Phys. Lett. 2017, 111, 183903.
25. Tong, S.; Ma, B.; Narayanan, M.; et al. Lead lanthanum zirconate titanate ceramic thin films for energy storage. ACS. Appl. Mater. Interfaces. 2013, 5, 1474-80.
26. Pan, H.; Zeng, Y.; Shen, Y.; et al. BiFeO3–SrTiO3 thin film as a new lead-free relaxor-ferroelectric capacitor with ultrahigh energy storage performance. J. Mater. Chem. A. 2017, 5, 5920-6.
27. Pan, H.; Li, F.; Liu, Y.; et al. Ultrahigh-energy density lead-free dielectric films via polymorphic nanodomain design. Science 2019, 365, 578-82.
28. Pan, H.; Lan, S.; Xu, S.; et al. Ultrahigh energy storage in superparaelectric relaxor ferroelectrics. Science 2021, 374, 100-4.
29. Lee, H. J.; Won, S. S.; Cho, K. H.; et al. Flexible high energy density capacitors using La-doped PbZrO3 anti-ferroelectric thin films. Appl. Phys. Lett. 2018, 112, 092901.
30. Hao, X.; Wang, Y.; Yang, J.; An, S.; Xu, J. High energy-storage performance in Pb0.91La0.09(Ti0.65Zr0.35)O3 relaxor ferroelectric thin films. J. Appl. Phys. 2012, 112, 114111.
31. Lin, Z.; Chen, Y.; Liu, Z.; Wang, G.; Rémiens, D.; Dong, X. Large energy storage density, low energy loss and highly stable (Pb0.97La0.02)(Zr0.66Sn0.23Ti0.11)O3 antiferroelectric thin-film capacitors. J. Eur. Ceram. Soc. 2018, 38, 3177-81.
32. Ali, F.; Liu, X.; Zhou, D.; et al. Silicon-doped hafnium oxide anti-ferroelectric thin films for energy storage. J. Appl. Phys. 2017, 122, 144105.
33. Acharya, M.; Banyas, E.; Ramesh, M.; et al. Exploring the Pb1-xSrxHfO3 system and potential for high capacitive energy storage density and efficiency. Adv. Mater. 2022, 34, 2105967.
34. Yang, B.; Liu, Y.; Jiang, R. J.; et al. Enhanced energy storage in antiferroelectrics via antipolar frustration. Nature 2025, 637, 1104-10.
35. Cheng, H.; Ouyang, J.; Zhang, Y. X.; et al. Demonstration of ultra-high recyclable energy densities in domain-engineered ferroelectric films. Nat. Commun. 2017, 8, 1999.
36. Wang, J.; Shi, S.; Chen, L.; Li, Y.; Zhang, T. Phase-field simulations of ferroelectric/ferroelastic polarization switching. Acta. Mater. 2004, 52, 749-64.
37. Gao, R.; Shi, X.; Wang, J.; Zhang, G.; Huang, H. Designed giant room-temperature electrocaloric effects in metal-free organic perovskite [MDABCO](NH4)I3 by phase–field simulations. Adv. Funct. Mater. 2021, 31, 2104393.
38. Wang, J.; Ma, X.; Li, Q.; Britson, J.; Chen, L. Phase transitions and domain structures of ferroelectric nanoparticles: Phase field model incorporating strong elastic and dielectric inhomogeneity. Acta. Mater. 2013, 61, 7591-603.
39. Choudhury, S.; Li, Y.; Krilliii, C.; Chen, L. Phase-field simulation of polarization switching and domain evolution in ferroelectric polycrystals. Acta. Mater. 2005, 53, 5313-21.
40. Xu, B. X.; Schrade, D.; Gross, D.; Mueller, R. Fracture simulation of ferroelectrics based on the phase field continuum and a damage variable. Int. J. Fract. 2010, 166, 163-72.
41. Huang, S.; Duan, Z.; Chen, J.; et al. Phase-field modeling for energy storage optimization in ferroelectric ceramics capacitors during heat treatment process. Ceram. Int. 2024, 50, 52020-6.
42. Shen, Z. H.; Wang, J. J.; Lin, Y.; Nan, C. W.; Chen, L. Q.; Shen, Y. High-throughput phase-field design of high-energy-density polymer nanocomposites. Adv. Mater. 2018, 30, 1704380.
43. Shen, Z.; Bao, Z.; Cheng, X.; et al. Designing polymer nanocomposites with high energy density using machine learning. npj. Comput. Mater. 2021, 7, 578.
44. Shen, Z.; Wang, J.; Jiang, J.; et al. Phase-field model of electrothermal breakdown in flexible high-temperature nanocomposites under extreme conditions. Adv. Energy. Mater. 2018, 8, 1800509.
45. Li, F.; Zhang, S.; Yang, T.; et al. The origin of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution crystals. Nat. Commun. 2016, 7, 13807.
46. Li, F.; Zhang, S.; Xu, Z.; Chen, L. The contributions of polar nanoregions to the dielectric and piezoelectric responses in domain-engineered relaxor-PbTiO3 crystals. Adv. Funct. Mater. 2017, 27, 1700310.
47. Shi, X.; Wang, J.; Xu, J.; Cheng, X.; Huang, H. Quantitative investigation of polar nanoregion size effects in relaxor ferroelectrics. Acta. Mater. 2022, 237, 118147.
48. Glinchuk, M. D.; Farhi, R. A random field theory based model for ferroelectric relaxors. J. Phys. Condens. Matter. 1996, 8, 6985.
49. Hong, Z.; Ke, X.; Wang, D.; Yang, S.; Ren, X.; Wang, Y. Role of point defects in the formation of relaxor ferroelectrics. Acta. Mater. 2022, 225, 117558.
50. Wang, S.; Yi, M.; Xu, B. A phase-field model of relaxor ferroelectrics based on random field theory. Int. J. Solids. Struct. 2016, 83, 142-53.
51. Song, Y.; Shi, X.; Wang, J.; Huang, H. Predicting dielectric properties of ferroelectric materials with point defects by a phase-field model. ACS. Appl. Electron. Mater. 2024, 6, 3726-33.
52. Song, Y.; Xu, K.; Wang, J.; Huang, H. Thickness-dependent dielectric properties in doped relaxor films by the phase-field model. ACS. Appl. Electron. Mater. 2024, 6, 6477-83.
53. Xu, K.; Tang, S.; Guo, C.; Song, Y.; Huang, H. Antiferroelectric domain modulation enhancing energy storage performance by phase-field simulations. J. Materiomics. 2025, 11, 100901.
54. Lin, B.; Ong, K. P.; Yang, T.; et al. Ultrahigh electromechanical response from competing ferroic orders. Nature 2024, 633, 798-803.
55. Xue, F.; Liang, L.; Gu, Y.; Takeuchi, I.; Kalinin, S. V.; Chen, L. Composition- and pressure-induced ferroelectric to antiferroelectric phase transitions in Sm-doped BiFeO3 system. Appl. Phys. Lett. 2015, 106, 012903.
56. Xu, K.; Shi, X.; Shao, C.; Dong, S.; Huang, H. Design of polar boundaries enhancing negative electrocaloric performance by antiferroelectric phase-field simulations. npj. Comput. Mater. 2024, 10, 1334.
57. Xu, K.; Shi, X.; Dong, S.; Wang, J.; Huang, H. Antiferroelectric phase diagram enhancing energy-storage performance by phase-field simulations. ACS. Appl. Mater. Interfaces. 2022, 14, 25770-80.
58. Li, Q.; Liu, F.; Yang, T.; et al. Sandwich-structured polymer nanocomposites with high energy density and great charge-discharge efficiency at elevated temperatures. Proc. Natl. Acad. Sci. U. S. A. 2016, 113, 9995-10000.
59. Shen, Z.; Wang, J.; Zhang, X.; et al. Space charge effects on the dielectric response of polymer nanocomposites. Appl. Phys. Lett. 2017, 111, 092901.
60. Zou, K.; Shao, C.; Bai, P.; et al. Giant room-temperature electrocaloric effect of polymer-ceramic composites with orientated BaSrTiO3 nanofibers. Nano. Lett. 2022, 22, 6560-6.
61. Bao, Z.; Hou, C.; Shen, Z.; et al. Negatively charged nanosheets significantly enhance the energy-storage capability of polymer-based nanocomposites. Adv. Mater. 2020, 32, 1907227.
62. Li, Z.; Shen, Z.; Yang, X.; et al. Ultrahigh charge-discharge efficiency and enhanced energy density of the sandwiched polymer nanocomposites with poly(methyl methacrylate) layer. Compos. Sci. Technol. 2021, 202, 108591.
63. Qian, J.; Peng, R.; Shen, Z.; et al. Interfacial coupling boosts giant electrocaloric effects in relaxor polymer nanocomposites: in situ characterization and phase-field simulation. Adv. Mater. 2019, 31, 1801949.
64. Cai, Z.; Wang, X.; Li, L.; Hong, W. Electrical treeing: a phase-field model. Extreme. Mech. Lett. 2019, 28, 87-95.
65. Cai, Z.; Wang, X.; Luo, B.; Hong, W.; Wu, L.; Li, L. Nanocomposites with enhanced dielectric permittivity and breakdown strength by microstructure design of nanofillers. Compos. Sci. Technol. 2017, 151, 109-14.
66. Shen, Z.; Shen, Y.; Cheng, X.; Liu, H.; Chen, L.; Nan, C. High-throughput data-driven interface design of high-energy-density polymer nanocomposites. J. Materiomics. 2020, 6, 573-81.
67. Wang, Z.; Feng, Z.; Tang, H.; et al. Effects of nanofibers orientation and aspect ratio on dielectric properties of nanocomposites: a phase-field simulation. ACS. Appl. Mater. Interfaces. 2022, 14, 42513-21.
68. Dong, X.; Hu, T.; Wu, X.; Yin, J.; Fu, Z.; Wu, J. A novel lead-free relaxor with endotaxial nanostructures for capacitive energy storage. SusMat 2024, 4, 116-25.
69. Wang, T.; Shi, X.; Peng, R.; et al. Giant energy storage of flexible composites by embedding superparaelectric single-crystal membranes. Nano. Energy. 2023, 113, 108511.
70. Cai, Z.; Zhu, C.; Wang, H.; et al. Giant dielectric breakdown strength together with ultrahigh energy density in ferroelectric bulk ceramics via layer-by-layer engineering. J. Mater. Chem. A. 2019, 7, 17283-91.
71. Guo, Y.; Zhao, W.; Li, D.; et al. Ultra-high capacitive energy storage density at 150 °C achieved in polyetherimide composite films by filler and structure design. Adv. Mater. 2025, 37, e2415652.
72. Jiang, J.; Shen, Z.; Cai, X.; et al. Polymer nanocomposites with interpenetrating gradient structure exhibiting ultrahigh discharge efficiency and energy density. Adv. Energy. Mater. 2019, 9, 1803411.
73. Zhao, P.; Cai, Z.; Chen, L.; et al. Ultra-high energy storage performance in lead-free multilayer ceramic capacitors via a multiscale optimization strategy. Energy. Environ. Sci. 2020, 13, 4882-90.
74. Khondabi, M.; Ahmadvand, H.; Javanbakht, M. Revisiting the dielectric breakdown in a polycrystalline ferroelectric: a phase-field simulation study. Adv. Theory. Simul. 2023, 6, 2200314.
75. Shen, Y.; Wu, L.; Zhao, J.; et al. Constructing novel binary Bi0.5Na0.5TiO3-based composite ceramics for excellent energy storage performances via defect engineering. Chem. Eng. J. 2022, 439, 135762.
76. Li, H.; Pan, Z.; Chen, X.; et al. Stable relaxor ferroelectric phase of NaNbO3-based ceramic with superb energy storage performances. Mater. Today. Phys. 2023, 38, 101208.
77. Huang, J.; Deng, L.; Zhang, Y.; et al. Realizing ultrahigh energy storage density in (Bi0.5Na0.5)0.94Ba0.06TiO3-based ceramics via manipulating the domain configuration and grain boundary density. ACS. Appl. Mater. Interfaces. 2024, 16, 57334-45.
78. Ye, H.; Yang, F.; Pan, Z.; et al. Significantly improvement of comprehensive energy storage performances with lead-free relaxor ferroelectric ceramics for high-temperature capacitors applications. Acta. Mater. 2021, 203, 116484.
79. Wang, X.; Huan, Y.; Zhao, P.; et al. Optimizing the grain size and grain boundary morphology of (K,Na)NbO3-based ceramics: paving the way for ultrahigh energy storage capacitors. J. Materiomics. 2021, 7, 780-9.
80. Yang, B.; Zhang, Y.; Pan, H.; et al. High-entropy enhanced capacitive energy storage. Nat. Mater. 2022, 21, 1074-80.
81. Cai, Z.; Wang, X.; Hong, W.; Luo, B.; Zhao, Q.; Li, L. Grain-size–dependent dielectric properties in nanograin ferroelectrics. J. Am. Ceram. Soc. 2018, 101, 5487-96.
82. Wei, K.; Duan, J.; Li, G.; Yu, H.; Qi, H.; Li, H. Enhancing comprehensive energy storage properties in Pb-free relaxor AFE/FE system via heterogeneous structure tuning and defect engineering. Acta. Mater. 2024, 278, 120278.
83. Li, Y.; Chang, Z.; Zhang, M.; et al. Realizing outstanding energy storage performance in KBT-based lead-free ceramics via suppressing space charge accumulation. Small 2024, 20, e2401229.
84. Cai, Z.; Feng, P.; Zhu, C.; Wang, X. Dielectric breakdown behavior of ferroelectric ceramics: the role of pores. J. Eur. Ceram. Soc. 2021, 41, 2533-8.
85. Yang, L.; Kong, X.; Li, Q.; Lin, Y. H.; Zhang, S.; Nan, C. W. Excellent energy storage properties achieved in sodium niobate-based relaxor ceramics through doping tantalum. ACS. Appl. Mater. Interfaces. 2022, 14, 32218-26.
86. Yang, L.; Kong, X.; Lin, Y.; Zhang, S.; Nan, C. Improved energy storage performance of NaNbO3-based antiferroelectrics by tuning polarizability and defect engineering. J. Am. Ceram. Soc. 2024, 107, 1848-58.
87. Yang, L.; Kong, X.; Cheng, Z.; Zhang, S. Ultra-high energy storage performance with mitigated polarization saturation in lead-free relaxors. J. Mater. Chem. A. 2019, 7, 8573-80.
88. Westphal, V.; Kleemann, W.; Glinchuk, M. D. Diffuse phase transitions and random-field-induced domain states of the “relaxor” ferroelectric PbMg1/3Nb2/3O3. Phys. Rev. Lett. 1992, 68, 847.
89. Chai, Q.; Liu, Z.; Deng, Z.; et al. Excellent energy storage properties in lead-free ferroelectric ceramics via heterogeneous structure design. Nat. Commun. 2025, 16, 1633.
90. Wang, W.; Zhang, L.; Shi, W.; et al. Enhanced energy storage properties in lead-free (Na0.5Bi0.5)0.7Sr0.3TiO3-based relaxor ferroelectric ceramics through a cooperative optimization strategy. ACS. Appl. Mater. Interfaces. 2023, 15, 6990-7001.
91. Li, D.; Zhou, D.; Wang, D.; et al. Lead-free relaxor ferroelectric ceramics with ultrahigh energy storage densities via polymorphic polar nanoregions design. Small 2023, 19, 2206958.
92. Li, D.; Xu, D.; Zhao, W.; et al. A high-temperature performing and near-zero energy loss lead-free ceramic capacitor. Energy. Environ. Sci. 2023, 16, 4511-21.
93. Li, D.; Zhou, D.; Wang, D.; Zhao, W.; Guo, Y.; Shi, Z. Improved energy storage properties achieved in (K, Na)NbO3-based relaxor ferroelectric ceramics via a combinatorial optimization strategy. Adv. Funct. Mater. 2022, 32, 2111776.
94. Zhao, W.; Xu, D.; Li, D.; et al. Broad-high operating temperature range and enhanced energy storage performances in lead-free ferroelectrics. Nat. Commun. 2023, 14, 5725.
95. Zhang, M.; Lan, S.; Yang, B. B.; et al. Ultrahigh energy storage in high-entropy ceramic capacitors with polymorphic relaxor phase. Science 2024, 384, 185-9.
96. Huang, W.; Chen, J.; Zhang, R.; et al. Effect of deformation modes on continuous dynamic recrystallization of extruded AZ31 Mg alloy. J. Alloys. Compd. 2022, 897, 163086.
97. Yang, B.; Liu, Y.; Gong, C.; et al. Design of high-entropy relaxor ferroelectrics for comprehensive energy storage enhancement. Adv. Funct. Mater. 2024, 34, 2409344.
98. Li, W.; Shen, Z. H.; Liu, R. L.; et al. Generative learning facilitated discovery of high-entropy ceramic dielectrics for capacitive energy storage. Nat. Commun. 2024, 15, 4940.
99. Yang, B.; Zhang, Q.; Huang, H.; et al. Engineering relaxors by entropy for high energy storage performance. Nat. Energy. 2023, 8, 956-64.
100. Peng, H.; Wu, T.; Liu, Z.; et al. High-entropy relaxor ferroelectric ceramics for ultrahigh energy storage. Nat. Commun. 2024, 15, 5232.
101. Sun, Z.; Zhang, J.; Luo, H.; et al. Superior capacitive energy-storage performance in Pb-free relaxors with a simple chemical composition. J. Am. Chem. Soc. 2023, 145, 6194-202.
102. Luo, J.; Zhu, H.; Zheng, T.; Qian, H.; Liu, Y.; Lyu, Y. A slush-like polar structure for high energy storage performance in a Sr0.7Bi0.2TiO3 lead-free relaxor ferroelectric thin film. J. Mater. Chem. A. 2022, 10, 7357-65.
103. Wang, H.; Wu, S.; Fu, B.; et al. Hierarchically polar structures induced superb energy storage properties for relaxor Bi0.5Na0.5TiO3-based ceramics. Chem. Eng. J. 2023, 471, 144446.
104. Tao, H.; Wu, H.; Liu, Y.; et al. Ultrahigh performance in lead-free piezoceramics utilizing a relaxor slush polar state with multiphase coexistence. J. Am. Chem. Soc. 2019, 141, 13987-94.
105. Yuan, R.; Kumar, A.; Zhuang, S.; et al. Machine learning-enabled superior energy storage in ferroelectric films with a slush-like polar state. Nano. Lett. 2023, 23, 4807-14.
106. Liu, Z.; Yang, B.; Cao, W.; Fohtung, E.; Lookman, T. Enhanced energy storage with polar vortices in ferroelectric nanocomposites. Phys. Rev. Appl. 2017, 8, 034014.
107. Hou, X.; Li, X.; Zhang, J.; Bag, S. P.; Li, H.; Wang, J. Effect of grain size on the electrocaloric properties of polycrystalline ferroelectrics. Phys. Rev. Appl. 2021, 15, 054019.
108. Wang, Z.; Bin, C.; Zheng, S.; Wang, J. Effect of grain size and grain boundary on the energy storage performance of polycrystalline ferroelectrics. Appl. Phys. Lett. 2024, 125, 152903.
109. Zhu, C.; Cai, Z.; Xiao, M.; et al. Boosting effective capacitance of nanograined BaTiO3-based ceramics via a precise core-shell-structure optimization strategy. J. Alloys. Compd. 2024, 984, 174037.
110. Cai, Z.; Zhu, C.; Wu, L.; Luo, B.; Feng, P.; Wang, X. Vortex domain configuration for energy-storage ferroelectric ceramics design: a phase-field simulation. Appl. Phys. Lett. 2021, 119, 032901.
111. Wang, J.; Liang, D.; Ma, J.; et al. Polar Solomon rings in ferroelectric nanocrystals. Nat. Commun. 2023, 14, 3941.
112. Liu, D.; Wang, J.; Jafri, H. M.; et al. Phase-field simulations of vortex chirality manipulation in ferroelectric thin films. npj. Quantum. Mater. 2022, 7, 444.
113. Das, S.; Hong, Z.; Stoica, V. A.; et al. Local negative permittivity and topological phase transition in polar skyrmions. Nat. Mater. 2021, 20, 194-201.
114. Das, S.; Tang, Y. L.; Hong, Z.; et al. Observation of room-temperature polar skyrmions. Nature 2019, 568, 368-72.
115. Zhou, L.; Huang, Y.; Das, S.; et al. Local manipulation and topological phase transitions of polar skyrmions. Matter 2022, 5, 1031-41.
116. Du, G.; Zhou, L.; Huang, Y.; Wu, Y.; Tian, H.; Hong, Z. Design of polar skyrmion-based nanoelectronic prototype devices with phase-field simulations. Adv. Funct. Mater. 2024, 34, 2405594.
117. Liu, Y.; Liu, J.; Pan, H.; et al. Phase-field simulations of tunable polar topologies in lead-free ferroelectric/paraelectric multilayers with ultrahigh energy-storage performance. Adv. Mater. 2022, 34, 2108772.
118. Zhao, Y.; Ouyang, J.; Wang, K.; et al. Achieving an ultra-high capacitive energy density in ferroelectric films consisting of superfine columnar nanograins. Energy. Storage. Mater. 2021, 39, 81-8.
119. Wang, J.; Su, Y.; Wang, B.; Ouyang, J.; Ren, Y.; Chen, L. Strain engineering of dischargeable energy density of ferroelectric thin-film capacitors. Nano. Energy. 2020, 72, 104665.
120. Xu, S.; Shi, X.; Pan, H.; et al. Strain engineering of energy storage performance in relaxor ferroelectric thin film capacitors. Adv. Theory. Simul. 2022, 5, 2100324.
121. Guo, C.; Yang, H.; Dong, S.; et al. Advancing energy-storage performance in freestanding ferroelectric thin films: insights from phase-field simulations. Adv. Elect. Mater. 2024, 10, 2400001.
122. Ma, C. H.; Liao, Y. K.; Zheng, Y.; et al. Synthesis of a new ferroelectric relaxor based on a combination of antiferroelectric and paraelectric systems. ACS. Appl. Mater. Interfaces. 2022, 14, 22278-86.
123. Zhu, J.; Liu, Z.; Zhong, B.; Wang, Y.; Xu, B. Domain size and charge defects affecting the polarization switching of antiferroelectric domains. Chinese. Phys. B. 2023, 32, 047701.
124. Wang, J.; Fan, X.; Liu, Z.; et al. Superior energy storage performance realized in antiferroelectric 0.10 wt% MnO2–AgNbO3 ceramics via Bi-doping induced phase engineering. J. Mater. Chem. A. 2023, 11, 22512-21.
125. Karniadakis, G. E.; Kevrekidis, I. G.; Lu, L.; Perdikaris, P.; Wang, S.; Yang, L. Physics-informed machine learning. Nat. Rev. Phys. 2021, 3, 422-40.
126. Lu, L.; Jin, P.; Pang, G.; Zhang, Z.; Karniadakis, G. E. Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators. Nat. Mach. Intell. 2021, 3, 218-29.
Comments
Comments must be written in English. Spam, offensive content, impersonation, and private information will not be permitted. If any comment is reported and identified as inappropriate content by OAE staff, the comment will be removed without notice. If you have any queries or need any help, please contact us at support@oaepublish.com.