REFERENCES
1. Zhang, Y.; Bai, S.; Jiang, B.; Li, K.; Dong, Z.; Pan, F. Modeling the correlation between texture characteristics and tensile properties of AZ31 magnesium alloy based on the artificial neural networks. J. Mater. Res. Technol. 2023, 24, 5286-97.
2. Bai, J.; Yang, Y.; Wen, C.; et al. Applications of magnesium alloys for aerospace: a review. J. Magnes. Alloys. 2023, 11, 3609-19.
3. Tian, P.; Liu, X. Surface modification of biodegradable magnesium and its alloys for biomedical applications. Regen. Biomater. 2015, 2, 135-51.
4. Yue, X.; Shang, J.; Zhang, M.; Hur, B.; Ma, X. Additive manufacturing of high porosity magnesium scaffolds with lattice structure and random structure. Mater. Sci. Eng. A. 2022, 859, 144167.
5. Abazari, S.; Shamsipur, A.; Bakhsheshi-Rad, H. R.; et al. Magnesium-based nanocomposites: a review from mechanical, creep and fatigue properties. J. Magnes. Alloys. 2023, 11, 2655-87.
6. Wang, S.; Pan, H.; Xie, D.; et al. Grain refinement and strength enhancement in Mg wrought alloys: a review. J. Magnes. Alloys. 2023, 11, 4128-45.
7. V, K.; Kumar, B. N.; Kumar, S. S.; M, V. Magnesium role in additive manufacturing of biomedical implants - challenges and opportunities. Addit. Manuf. 2022, 55, 102802.
8. Katunin, A.; Wronkowicz-Katunin, A.; Dragan, K. Impact damage evaluation in composite structures based on fusion of results of ultrasonic testing and X-ray computed tomography. Sensors 2020, 20, 1867.
9. Fu, Y.; Downey, A. R.; Yuan, L.; Zhang, T.; Pratt, A.; Balogun, Y. Machine learning algorithms for defect detection in metal laser-based additive manufacturing: a review. J. Manuf. Process. 2022, 75, 693-710.
10. Minaee, S.; Boykov, Y.; Porikli, F.; Plaza, A.; Kehtarnavaz, N.; Terzopoulos, D. Image segmentation using deep learning: a survey. IEEE. Trans. Pattern. Anal. Mach. Intell. 2022, 44, 3523-42.
11. Li, K.; Ma, R.; Qin, Y.; et al. A review of the multi-dimensional application of machine learning to improve the integrated intelligence of laser powder bed fusion. J. Mater. Proc. Technol. 2023, 318, 118032.
12. Gao, G.; Xu, G.; Yu, Y.; Xie, J.; Yang, J.; Yue, D. MSCFNet: a lightweight network with multi-scale context fusion for real-time semantic segmentation. IEEE. Trans. Intell. Transport. Syst. 2022, 23, 25489-99.
13. Hong, D.; Yao, J.; Meng, D.; Xu, Z.; Chanussot, J. Multimodal GANs: toward crossmodal hyperspectral–multispectral image segmentation. IEEE. Trans. Geosci. Remote. Sensing. 2021, 59, 5103-13.
14. Wang, L.; Li, R.; Zhang, C.; et al. UNetFormer: a UNet-like transformer for efficient semantic segmentation of remote sensing urban scene imagery. ISPRS. J. Photogramm. Remote. Sens. 2022, 190, 196-214.
15. Lu, W.; Zhang, Z.; Nguyen, M. A lightweight CNN–transformer network with laplacian loss for low-altitude UAV imagery semantic segmentation. IEEE. Trans. Geosci. Remote. Sensing. 2024, 62, 1-20.
16. Wu, J.; Liu, B.; Zhang, H.; He, S.; Yang, Q. Fault detection based on fully convolutional networks (FCN). JMSE. 2021, 9, 259.
17. Papadeas, I.; Tsochatzidis, L.; Amanatiadis, A.; Pratikakis, I. Real-time semantic image segmentation with deep learning for autonomous driving: a survey. Appl. Sci. 2021, 11, 8802.
18. Chu, P.; Li, Z.; Lammers, K.; Lu, R.; Liu, X. Deep learning-based apple detection using a suppression mask R-CNN. Pattern. Recognit. Lett. 2021, 147, 206-11.
19. Yang, J.; Tu, J.; Zhang, X.; Yu, S.; Zheng, X. TSE DeepLab: an efficient visual transformer for medical image segmentation. Biomed. Signal. Process. Control. 2023, 80, 104376.
20. Lin, K.; Zhao, H.; Lv, J.; et al. Face detection and segmentation based on improved mask R-CNN. Discrete. Dyn. Nat. Soc. 2020, 2020, 1-11.
21. Qiong, L.; Chaofan, L.; Jinnan, T.; Liping, C.; Jianxiang, S. Medical image segmentation based on frequency domain decomposition SVD linear attention. Sci. Rep. 2025, 15, 2833.
22. Banjanovic-Mehmedovic, L.; Husaković, A.; Gurdic, R. A.; Prlja, N.; Karabegovi, I. Advancements in robotic intelligence: the role of computer vision, DRL, transformers and LLMs. 2024.
23. Kolides, A.; Nawaz, A.; Rathor, A.; et al. Artificial intelligence foundation and pre-trained models: fundamentals, applications, opportunities, and social impacts. Simul. Model. Pract. Theory. 2023, 126, 102754.
24. Han, D.; Pan, X.; Han, Y.; Song, S.; Huang, G. Flatten transformer: vision transformer using focused linear attention. In: 2023 IEEE/CVF International Conference on Computer Vision (ICCV), Paris, France. Oct 01-06, 2023. IEEE, 2023; pp. 5961-71.
25. Chen, J.; Mei, J.; Li, X.; et al. 3D TransUNet: advancing medical image segmentation through vision transformers. arXiv2023, arXiv:2310.07781. Available online: https://doi.org/10.48550/arXiv.2310.07781. (accessed on 12 Mar 2025)
26. Ozcan, A.; Tosun, Ö.; Donmez, E.; Sanwal, M. Enhanced-TransUNet for ultrasound segmentation of thyroid nodules. Biomed. Signal. Process. Control. 2024, 95, 106472.
27. Jain, J.; Li, J.; Chiu, M.; Hassani, A.; Orlov, N.; Shi, H. OneFormer: one transformer to rule universal image segmentation. arXiv2022, arXiv:2211.06220. Available online: https://doi.org/10.48550/arXiv.2211.06220. (accessed on 12 Mar 2025)
28. Chen, J.; Mei, J.; Li, X.; et al. TransUNet: rethinking the U-Net architecture design for medical image segmentation through the lens of transformers. Med. Image. Anal. 2024, 97, 103280.
29. Chen, J.; Lu, Y.; Yu, Q.; er,. TransUnet: transformers make strong encoders for medical image segmentation. arXiv2021, arXiv:2102.04306. Available online: https://doi.org/10.48550/arXiv.2102.04306. (accessed on 12 Mar 2025)
30. Anand, V.; Kanhangad, V. PoreNet: CNN-based pore descriptor for high-resolution fingerprint recognition. IEEE. Sensors. J. 2020, 20, 9305-13.
31. Al-Zaidawi, S. M. K.; Bosse, S. A pore classification system for the detection of additive manufacturing defects combining machine learning and numerical image analysis. Eng. Proc. 2023, 58, 122.
32. Budd, S.; Robinson, E. C.; Kainz, B. A survey on active learning and human-in-the-loop deep learning for medical image analysis. Med. Image. Anal. 2021, 71, 102062.
33. Zheng, S.; Song, Y.; Leung, T.; Goodfellow, I. Improving the robustness of deep neural networks via stability training. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA. Jun 27-30, 2016. IEEE, 2016; pp. 4480-8.
34. Michaelis, C.; Mitzkus, B.; Geirhos, R. Benchmarking robustness in object detection: autonomous driving when winter is coming. arXiv2019, arXiv:1907.07484. Available online: https://doi.org/10.48550/arXiv.1907.07484. (accessed on 12 Mar 2025)
35. Farrukh, Y. A.; Wali, S.; Khan, I.; Bastian, N. D. SeNet-I: an approach for detecting network intrusions through serialized network traffic images. Eng. Appl. Artif. Intell. 2023, 126, 107169.
36. Huang, Y.; Shi, P.; He, H.; He, H.; Zhao, B. Senet: spatial information enhancement for semantic segmentation neural networks. Vis. Comput. 2024, 40, 3427-40.
37. Zhao, Y.; Jiang, Y.; Huang, L.; Xia, K. SEF-UNet: advancing abdominal multi-organ segmentation with SEFormer and depthwise cascaded upsampling. PeerJ. Comput. Sci. 2024, 10, e2238.
38. Cai, Z.; Liu, S.; Wang, G.; Ge, Z.; Zhang, X.; Huang, D. Align-DETR: enhancing end-to-end object detection with aligned loss. arXiv2023, arXiv:2304.07527. Available online: https://doi.org/10.48550/arXiv.2304.07527. (accessed on 12 Mar 2025)
39. Nong, X.; Luo, X.; Lin, S.; Ruan, Y.; Ye, X. Multimodal deep neural network-based sensor data anomaly diagnosis method for structural health monitoring. Buildings 2023, 13, 1976.
40. Alammar, Z.; Alzubaidi, L.; Zhang, J.; Li, Y.; Lafta, W.; Gu, Y. Deep transfer learning with enhanced feature fusion for detection of abnormalities in X-ray images. Cancers 2023, 15, 4007.
41. Tang, Q.; Liang, J.; Zhu, F. A comparative review on multi-modal sensors fusion based on deep learning. Signal. Process. 2023, 213, 109165.