REFERENCES

1. Shahriari, B.; Swersky, K.; Wang, Z.; Adams, R. P.; de Freitas, N. Taking the human out of the loop: a review of Bayesian optimization. Proc. IEEE. 2016, 104, 148-75.

2. Lookman, T.; Balachandran, P.; Xue, D.; Yuan, R. Active learning in materials science with emphasis on adaptive sampling using uncertainties for targeted design. npj. Comput. Mater. 2019, 5, 21.

3. Balachandran, P. V.; Xue, D.; Theiler, J.; Hogden, J.; Lookman, T. Adaptive strategies for materials design using uncertainties. Sci. Rep. 2016, 6, 19660.

4. Shi, B.; Zhou, Y.; Fang, D.; et al. Estimating the performance of a material in its service space via Bayesian active learning: a case study of the damping capacity of Mg alloys. J. Mater. Inf. 2022, 2, 8.

5. Giles, S. A.; Sengupta, D.; Broderick, S. R.; Rajan, K. Machine-learning-based intelligent framework for discovering refractory high-entropy alloys with improved high-temperature yield strength. npj. Comput. Mater. 2022, 8, 235.

6. Khatamsaz, D.; Vela, B.; Singh, P.; Johnson, D.; Allaire, D.; Arróyave, R. Bayesian optimization with active learning of design constraints using an entropy-based approach. npj. Comput. Mater. 2023, 9, 49.

7. Moitzi, F.; Romaner, L.; Ruban, A. V.; Hodapp, M.; Peil, O. E. Ab initio framework for deciphering trade-off relationships in multi-component alloys. npj. Comput. Mater. 2024, 10, 152.

8. Bouquerel, J.; Verbeken, K.; De Cooman, B. C. Microstructure-based model for the static mechanical behaviour of multiphase steels. Acta. Mater. 2006, 54, 1443-56.

9. Bramfitt, B. L. Structure/property relationships in irons and steels. In: Metals Handbook Desk Edition. ASM International; 1998. pp. 153–73.

10. Bhadeshia, H. K. D. H.; Honeycombe, R. W. K. Steels: microstructure and properties. 4th edition. Butterworth-Heinemann; 2017. https://shop.elsevier.com/books/steels-microstructure-and-properties/bhadeshia/978-0-08-100270-4. (accessed 2025-03-10).

11. Alibeyki, M.; Mirzadeh, H.; Najafi, M.; Kalhor, A. Modification of rule of mixtures for estimation of the mechanical properties of dual phase steels. J. Mater. Eng. Perform. 2017, 26, 2683-8.

12. Prawoto, Y.; Djuansjah, J. R. P.; Shaffiar, N. B. Re-visiting the ’rule of mixture’ used in materials with multiple constituting phases: a technical note on morphological considerations in austenite case study. Comput. Mater. Sci. 2012, 65, 528-35.

13. Bouaziz, O.; Buessler, P. Mechanical behaviour of multiphase materials: an intermediate mixture law without fitting parameter. Rev. Met. Paris. 2002, 99, 71-7.

14. Bhadeshia, H. K. D. H. Bainite in steels - Theory and practice CRC Press; 2015.

15. Low, A. K. Y.; Vissol-Gaudin, E.; Lim, Y. F.; Hippalgaonkar, K. Mapping pareto fronts for efficient multi-objective materials discovery. J. Mater. Inform. 2023, 3, 11.

16. Khatamsaz, D.; Vela, B.; Singh, P.; Johnson, D. D.; Allaire, D.; Arróyave, R. Multi-objective materials bayesian optimization with active learning of design constraints: design of ductile refractory multi-principal-element alloys. Acta. Mater. 2022, 236, 118133.

17. Quionero-Candela, J.; Sugiyama, M.; Schwaighofer, A.; Lawrence, N. D. Dataset shift in machine learning. The MIT Press; 2009. https://mitpress.mit.edu/9780262545877/dataset-shift-in-machine-learning/. (accessed 2025-03-10).

18. Malinin, A.; Gales, M. Predictive uncertainty estimation via prior networks. arXiv2018, arXiv:1802.10501. Available online: https://doi.org/10.48550/arXiv.1802.10501. (accessed on 10 Mar 2025).

19. Cuomo, S.; Di Cola, V. S.; Giampaolo, F.; Rozza, G.; Raissi, M.; Piccialli, F. Scientific machine learning through physics-informed neural networks: where we are and what’s next. J. Sci. Comput. 2022, 92, 88.

20. Papadopoulos, H. Guaranteed coverage prediction intervals with Gaussian process regression. IEEE. Trans. Pattern. Anal. Mach. Intell. 2024, 46, 9072-83.

21. Vovk, V.; Gammerman, A.; Shafer, G. Algorithmic learning in a random world Springer; 2005.

22. Angelopoulos AN, Bates S. A gentle introduction to conformal prediction and distribution-free uncertainty quantification. arXiv2021, arXiv:2107.07511. Available online: https://doi.org/10.48550/arXiv.2107.07511. (accessed on 10 Mar 2025).

23. Tibshirani, R. J.; Foygel Barber, R.; Candes, E.; Ramdas, A. Conformal prediction under covariate shift. arXiv2019, arXiv:1904.06019. Available online: https://doi.org/10.48550/arXiv.1904.06019. (accessed on 10 Mar 2025).

24. Caballero, F. G. 12 - Carbide-free bainite in steels. In: Pereloma E, Edmonds DV, editors. Phase Transformations in steels. vol. 1 of Woodhead Publishing Series in Metals and Surface Engineering. Woodhead Publishing; 2012. pp. 436–67.

25. Zhu, K.; Mager, C.; Huang, M. Effect of substitution of Si by Al on the microstructure and mechanical properties of bainitic transformation-induced plasticity steels. J. Mater. Sci. Technol. 2017, 33, 1475-86.

26. Sugimoto, K. Effects of partial replacement of Si by Al on cold formability in two groups of low-carbon third-generation advanced high-strength steel sheet: a review. Metals 2022, 12, 2069.

27. Lukas, H.; Fries, S. G.; Sundman, B. Computational thermodynamics: the calphad method Cambridge University Press; 2007.

28. Kozeschnik, E. Mean-field microstructure kinetics modeling. In: Caballero FG, editor. Encyclopedia of Materials: Metals and Alloys. Oxford: Elsevier; 2022. pp. 521–6.

29. van Bohemen, S. M. C. Bainite and martensite start temperature calculated with exponential carbon dependence. Mater. Sci. Technol. 2012, 28, 487-95.

30. Leach, L.; Kolmskog, P.; Höglund, L.; Hillert, M.; Borgenstam, A. Use of Fe-C information as reference for alloying effects on BS. Metall. Mater. Trans. A. 2019, 50, 4531-40.

31. Schuscha, B.; Brandl, D.; Romaner, L.; et al. Predictive modeling of the Bainite start temperature using Bayesian inference. Acta. Mater. 2024. DOI: 10.2139/ssrn.4930824.

32. Leach, L.; Kolmskog, P.; Höglund, L.; Hillert, M.; Borgenstam, A. Critical driving forces for formation of Bainite. Metall. Mater. Trans. A. 2018, 49, 4509-20.

33. Lu, Q.; Liu, S.; Li, W.; Jin, X. Combination of thermodynamic knowledge and multilayer feedforward neural networks for accurate prediction of MS temperature in steels. Mater. Design. 2020, 192, 108696.

34. Li, M. V.; Niebuhr, D. V.; Meekisho, L. L.; Atteridge, D. G. A computational model for the prediction of steel hardenability. Metall. Mater. Trans. B. 1998, 29, 661-72.

35. Martin, H.; Amoako-Yirenkyi, P.; Pohjonen, A.; Frempong, N. K.; Komi, J.; Somani, M. Statistical modeling for prediction of CCT diagrams of steels involving interaction of alloying elements. Metall. Mater. Trans. B. 2020, 52, 223-35.

36. Geng, X.; Wang, H.; Xue, W.; et al. Modeling of CCT diagrams for tool steels using different machine learning techniques. Comput. Mater. Sci. 2020, 171, 109235.

37. Minamoto, S.; Tsukamoto, S.; Kasuya, T.; Watanabe, M.; Demura, M. Prediction of continuous cooling transformation diagram for weld heat affected zone by machine learning. Sci. Technol. Adv. Mat. 2022, 2, 402-15.

38. Huang, X.; Wang, H.; Xue, W.; et al. A combined machine learning model for the prediction of time-temperature-transformation diagrams of high-alloy steels. J. Alloys. Compd. 2020, 823, 153694.

39. Povoden-Karadeniz, E. MatCalc thermodynamic steel database, version 2.061, 2023. https://www.matcalc.at/images/stories/Download/Database/mc_fe_v2061.tdb. (accessed 2025-03-10).

40. Presoly, P.; Gerstl, B.; Bernhard, C.; et al. Primary carbide formation in tool steels: potential of selected laboratory methods and potential of partial premelting for the generation of thermodynamic data. Steel. Res. Int. 2022, 94, 2200503.

41. Presoly, P.; Pierer, R.; Bernhard, C. Identification of defect prone peritectic steel grades by analyzing high-temperature phase transformations. Metall. Mater. Trans. A. 2013, 44, 5377-88.

42. Verein Deutscher Eisenhüttenleute Unterausschuss für Metallographie, Werkstoffanalytik und -simulation. Guidelines for preparation, execution and evaluation of dilatometric transformation tests on iron alloys. Verlag Stahleisen GmbH; 1998. https://books.google.com/books/about/Guidelines_for_preparation_execution_and.html?id=R6-d0AEACAAJ. (accessed 2025-03-10).

43. Williams, C. K. I.; Rasmussen, C. Gaussian processes for regression. In: Advances in neural information processing systems. MIT Press; 1995. https://proceedings.neurips.cc/paper/1995/hash/7cce53cf90577442771720a370c3c723-Abstract.html. (accessed 2025-03-10).

44. Rasmussen, C. E.; Williams, C. K. I. Gaussian processes for machine learning MIT Press; 2005.

45. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5-32.

46. Friedman, J.; Hastie, T.; Tibshirani, R. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). Ann. Statist. 2000, 28, 337-407.

47. Fiedler, C.; Scherer, C. W.; Trimpe, S. Practical and rigorous uncertainty bounds for Gaussian process regression. AAAI. Conf. Artif. Intell. 2021, 35, 7349-47.

48. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning. MIT Press; 2016. https://www.deeplearningbook.org/. (accessed 2025-03-10).

49. Kitouni, O.; Nolte, N.; Williams, M. Expressive monotonic neural networks. arXiv2023, arXiv:2307.07512. Available online: https://doi.org/10.48550/arXiv.2307.07512. (accessed on 10 Mar 2025).

50. Boser, B. E.; Guyon, I. M.; Vapnik, V. N. A training algorithm for optimal margin classifiers. In: Proceedings of the fifth annual workshop on Computational learning theory. Association for Computing Machinery, 1992; pp. 144–52.

51. D’Angelo, F.; Henning, C. On out-of-distribution detection with Bayesian neural networks. arXiv2021, arXiv:2110.06020. Available online: https://doi.org/10.48550/arXiv.2110.06020. (accessed on 10 Mar 2025).

52. Hüllermeier, E.; Waegeman, W. Aleatoric and epistemic uncertainty in machine learning: an introduction to concepts and methods. Mach. Learn. 2021, 110, 457-506.

53. Gruber, C.; Schenk, P.; Schierholz, M.; Kreuter, F.; Kauermann, G. Sources of uncertainty in machine learning - a statisticians’ view. arXiv2023, arXiv:2305.16703. Available online: https://doi.org/10.48550/arXiv.2305.16703. (accessed on 10 Mar 2025).

54. Tran, K.; Neiswanger, W.; Yoon, J.; Zhang, Q.; Xing, E.; Ulissi, Z. W. Methods for comparing uncertainty quantifications for material property predictions. Mach. Learn. Sci. Technol. 2020, 1, 025006.

55. Lahlou, S.; Jain, M.; Nekoei, H.; et al. DEUP: direct epistemic uncertainty prediction. arXiv2021, arXiv:2102.08501. Available online: https://doi.org/10.48550/arXiv.2102.08501. (accessed on 10 Mar 2025).

56. Shafer, G.; Vovk, V. A tutorial on conformal prediction. arXiv2007, arXiv:0706.3188. Available online: https://doi.org/10.48550/arXiv.0706.3188. (accessed on 10 Mar 2025).

57. Papadopoulos, H.; Proedrou, K.; Vovk, V.; Gammerman, A. Inductive confidence machines for regression. In: Machine learning: ECML 2002: 13th European conference on machine learning, Helsinki, Finland, August 19-23, 2002. Springer, 2002; pp. 345–56.

58. Papadopoulos, H.; Vovk, V.; Gammerman, A. Regression conformal prediction with nearest neighbours. J. Artif. Intell. Res. 2011, 40, 815-40.

59. Bishop, C. M. Pattern recognition and machine learning. Berlin, Heidelberg: Springer-Verlag; 2006. https://link.springer.com/book/9780387310732. (accessed 2025-03-10).

60. Panaretos, V. M.; Zemel, Y. Statistical aspects of Wasserstein distances. Annu. Rev. Stat. Appl. 2019, 6, 405-31.

61. McLachlan, G. J. Mahalanobis distance. Reson 1999, 4, 20-6.

62. Luo, C.; Zhan, J.; Wang, L.; Yang, Q. Cosine normalization: using cosine similarity instead of dot product in neural networks. arXiv2017, arXiv:1702.05870. Available online: https://doi.org/10.48550/arXiv.1702.05870. (accessed on 10 Mar 2025).

63. Damon, J.; Mühl, F.; Dietrich, S.; Schulze, V. A comparative study of kinetic models regarding Bainitic transformation behavior in carburized case hardening steel 20MnCr5. Metall. Mater. Trans. A. 2018, 50, 104-17.

64. Kumnorkaew, T.; Lian, J.; Uthaisangsuk, V.; Bleck, W. Kinetic model of isothermal Bainitic transformation of low carbon steels under ausforming conditions. Alloys 2022, 1, 93-115.

65. Lin, S.; Borgenstam, A.; Stark, A.; Hedström, P. Effect of Si on bainitic transformation kinetics in steels explained by carbon partitioning, carbide formation, dislocation densities, and thermodynamic conditions. Mater. Charact. 2022, 185, 111774.

66. Luzginova, N. V.; Zhao, L.; Wauthier, A.; Sietsma, J. The kinetics of the isothermal Bainite formation in 1 In: Microalloying for New Steel Processes and Applications. vol. 500 of Materials Science Forum. Trans Tech Publications Ltd; 2005. pp. 419–28.

67. Morawiec, M.; Ruiz-Jimenez, V.; Garcia-Mateo, C.; Grajcar, A. Thermodynamic analysis and isothermal bainitic transformation kinetics in lean medium-Mn steels. J. Therm. Anal. Calorim. 2020, 142, 1709-19.

68. Pei, W.; Liu, W.; Zhang, Y.; Qie, R.; Zhao, A. Study on kinetics of transformation in medium carbon steel Bainite at different isothermal temperatures. Materials 2021, 14, 2721.

69. Quidort, D.; Bréchet, Y. The role of carbon on the kinetics of bainite transformation in steels. Scr. Mater. 2002, 47, 151-6.

70. Quidort, D.; Brechet, Y. J. M. A model of isothermal and non isothermal transformation kinetics of bainite in 0.5% C steels. ISIJ. Int. 2002, 42, 1010-7.

71. Babasafari, Z.; Pan, A. V.; Pahlevani, F.; Moon, S. C.; Du Toit, M.; Dippenaar, R. Kinetics of bainite transformation in multiphase high carbon low-silicon steel with and without pre-existing martensite. Metals 2022, 12, 1969.

72. Ravi, A.; Kumar, A.; Herbig, M.; Sietsma, J.; Santofimia, M. J. Impact of austenite grain boundaries and ferrite nucleation on bainite formation in steels. Acta. Mater. 2020, 188, 424-34.

73. Singh, S. B.; Bhadeshia, H. K. D. H. Quantitative evidence for mechanical stabilization of bainite. Mater. Sci. Technol. 1996, 12, 610-2.

74. Sourmail, T.; Smanio, V. Influence of cobalt on Bainite formation kinetics in 1 Pct C steel. Metall. Mater. Trans. A. 2013, 44, 1975-8.

75. van Bohemen, S. M. C.; Sietsma, J. Modeling of isothermal bainite formation based on the nucleation kinetics. Int. J. Mater. Res. 2008, 99, 739-47.

76. van Bohemen, S. M. C.; Sietsma, J. The kinetics of bainite and martensite formation in steels during cooling. Mater. Sci. Eng. A. 2010, 527, 6672-6.

77. van Bohemen, S. M. C.; Hanlon, D. N. A physically based approach to model the incomplete bainitic transformation in high-Si steels. Int. J. Mater. Res. 2012, 103, 987-91.

78. van Bohemen, S. M. C. Bainite growth retardation due to mechanical stabilisation of austenite. Materialia 2019, 7, 100384.

79. Gao, B.; Tan, Z.; Tian, Y.; et al. Accelerated isothermal phase transformation and enhanced mechanical properties of railway wheel steel: the significant role of pre-existing Bainite. Steel. Res. Int. 2022, 93, 2100494.

80. Kang, J.; Zhang, F. C.; Yang, X. W.; Lv, B.; Wu, K. M. Effect of tempering on the microstructure and mechanical properties of a medium carbon bainitic steel. Mater. Sci. Eng. A. 2017, 686, 150-9.

81. Sage, A. M. Atlas of continuous cooling transformation diagrams for vanadium steels. Vanitec Publication; 1985. https://vanitec.org/technical-library/paper/atlas-of-continuous-cooling-transformation-diagrams-for-vanadium-steels. (accessed 2025-03-10).

82. Vander Voort, G. F. Atlas of time-temperature diagrams for irons and steels. ASM International; 1991. https://app.knovel.com/kn/resources/kpATTDIS05/toc. (accessed 2025-03-10).

83. United States Steel Corporation. Atlas of isothermal transformation Diagrams: 1953 Supplement. 1953. https://books.google.com/books/about/Atlas_of_Isothermal_Transformation_Diagr.html?id=8aVTAAAAMAAJ. (accessed 2025-03-10).

84. Lundberg, S. M.; Lee, S. I. A unified approach to interpreting model predictions. arXiv2017, arXiv:1705.07874. Available online: https://doi.org/10.48550/arXiv.1705.07874. (accessed 10 Mar 2025).

85. Ravi, A. M.; Navarro-López, A.; Sietsma, J.; Santofimia, M. J. Influence of martensite/austenite interfaces on bainite formation in low-alloy steels below Ms. Acta. Mater. 2020, 188, 394-405.

86. Tian, J.; Xu, G.; Zhou, M.; Hu, H.; Xue, Z. Effects of Al addition on bainite transformation and properties of high-strength carbide-free bainitic steels. J. Iron. Steel. Res. Int. 2019, 26, 846-55.

87. Garcia-Mateo, C.; Caballero, F. G.; Bhadeshia, H. K. D. H. Acceleration of Low-temperature Bainite. ISIJ. Int. 2003, 43, 1821-5.

Journal of Materials Informatics
ISSN 2770-372X (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/