REFERENCES
1. Pan, H.; Pan, F.; Yang, R.; et al. Thermal and electrical conductivity of binary magnesium alloys. J. Mater. Sci. 2014, 49, 3107-24.
2. Li, S.; Yang, X.; Hou, J.; Du, W. A review on thermal conductivity of magnesium and its alloys. J. Magnes. Alloys. 2020, 8, 78-90.
3. Bai, J.; Yang, Y.; Wen, C.; et al. Applications of magnesium alloys for aerospace: a review. J. Magnes. Alloys. 2023, 11, 3609-19.
4. Zhang, W.; Ma, M.; Yuan, J.; et al. Microstructure and thermophysical properties of Mg−2Zn−xCu alloys. Trans. Nonferrous. Met. Soc. China. 2020, 30, 1803-15.
5. Li, G.; Zhang, J.; Wu, R.; et al. Development of high mechanical properties and moderate thermal conductivity cast Mg alloy with multiple RE via heat treatment. J. Mater. Sci. Technol. 2018, 34, 1076-84.
6. Bazhenov, V.; Koltygin, A.; Sung, M.; et al. Development of Mg–Zn–Y–Zr casting magnesium alloy with high thermal conductivity. J. Magnes. Alloys. 2021, 9, 1567-77.
7. Rong, J.; Zhu, J.; Xiao, W.; Zhao, X.; Ma, C. A high pressure die cast magnesium alloy with superior thermal conductivity and high strength. Intermetallics 2021, 139, 107350.
8. Liu, X.; Wu, Y.; Liu, Z.; Lu, C.; Xie, H.; Li, J. Thermal and electrical conductivity of as-cast Mg-4Y-xZn alloys. Mater. Res. Express. 2018, 5, 066532.
9. Rudajevová, A.; Staněk, M.; Lukáč, P. Determination of thermal diffusivity and thermal conductivity of Mg–Al alloys. Mater. Sci. Eng. A. 2003, 341, 152-7.
10. Yuan, G.; You, G.; Bai, S.; Guo, W. Effects of heat treatment on the thermal properties of AZ91D magnesium alloys in different casting processes. J. Alloys. Compd. 2018, 766, 410-6.
11. Sharma, P.; Johnson, D. D.; Balasubramanian, G.; Singh, P. Unraveling the connection of electronic and phononic structure with mechanical properties of commercial AZ80 alloy. Mater. Lett. 2024, 366, 136501.
12. Tong, Z.; Li, S.; Ruan, X.; Bao, H. Comprehensive first-principles analysis of phonon thermal conductivity and electron-phonon coupling in different metals. Phys. Rev. B. 2019, 100, 144306.
13. Zhou, S.; Jacobs, R.; Xie, W.; Tea, E.; Hin, C.; Morgan, D. Combined ab initio and empirical model of the thermal conductivity of uranium, uranium-zirconium, and uranium-molybdenum. Phys. Rev. Mater. 2018, 2, 083401.
14. Hu, M.; Yang, Z. Perspective on multi-scale simulation of thermal transport in solids and interfaces. Phys. Chem. Chem. Phys. 2021, 23, 1785-801.
15. Fang, J.; Xie, M.; He, X.; et al. Machine learning accelerates the materials discovery. Mater. Today. Commun. 2022, 33, 104900.
16. Juan, Y.; Niu, G.; Yang, Y.; et al. Accelerated design of Al−Zn−Mg−Cu alloys via machine learning. Trans. Nonferrous. Met. Soc. China. 2024, 34, 709-23.
17. Yuan, Y.; Sui, Y.; Li, P.; Quan, M.; Zhou, H.; Jiang, A. Multi-model integration accelerates Al-Zn-Mg-Cu alloy screening. J. Mater. Inf. 2024, 4, 23.
18. Lu, Z.; Kapoor, I.; Li, Y.; Liu, Y.; Zeng, X.; Wang, L. Machine learning driven design of high-performance Al alloys. J. Mater. Inf. 2024, 4, 19.
19. Sutton, C.; Boley, M.; Ghiringhelli, L. M.; Rupp, M.; Vreeken, J.; Scheffler, M. Identifying domains of applicability of machine learning models for materials science. Nat. Commun. 2020, 11, 4428.
20. Schleder, G. R.; Padilha, A. C. M.; Acosta, C. M.; Costa, M.; Fazzio, A. From DFT to machine learning: recent approaches to materials science - a review. J. Phys. Mater. 2019, 2, 032001.
21. Pederson, R.; Kalita, B.; Burke, K. Machine learning and density functional theory. Nat. Rev. Phys. 2022, 4, 357-8.
22. Xi, S.; Yu, J.; Bao, L.; et al. Machine learning-accelerated first-principles predictions of the stability and mechanical properties of L12-strengthened cobalt-based superalloys. J. Mater. Inf. 2022, 2, 15.
23. Yadav, N.; Chakraborty, N.; Tewari, A. Interval prediction machine learning models for predicting experimental thermal conductivity of high entropy alloys. Comput. Mater. Sci. 2022, 214, 111754.
24. Hart, G. L. W.; Mueller, T.; Toher, C.; Curtarolo, S. Machine learning for alloys. Nat. Rev. Mater. 2021, 6, 730-55.
25. Huang, L.; Liu, S.; Du, Y.; Zhang, C. Thermal conductivity of the Mg–Al–Zn alloys: experimental measurement and CALPHAD modeling. Calphad 2018, 62, 99-108.
26. Li, X.; Zheng, M.; Pan, H.; Mao, C.; Ding, W. An integrated design of novel RAFM steels with targeted microstructures and tensile properties using machine learning and CALPHAD. J. Mater. Inf. 2024, 4, 27.
27. Chen, Z.; Yang, Y. Data-driven design of eutectic high entropy alloys. J. Mater. Inf. 2023, 3, 10.
28. Chen, E.; Tamm, A.; Wang, T.; Epler, M. E.; Asta, M.; Frolov, T. Modeling antiphase boundary energies of Ni3Al-based alloys using automated density functional theory and machine learning. npj. Comput. Mater. 2022, 8, 755.
29. Liu, Y.; Wu, J.; Wang, Z.; et al. Predicting creep rupture life of Ni-based single crystal superalloys using divide-and-conquer approach based machine learning. Acta. Mater. 2020, 195, 454-67.
30. Zou, C.; Li, J.; Wang, W. Y.; et al. Integrating data mining and machine learning to discover high-strength ductile titanium alloys. Acta. Mater. 2021, 202, 211-21.
31. Wen, C.; Zhang, Y.; Wang, C.; et al. Machine learning assisted design of high entropy alloys with desired property. Acta. Mater. 2019, 170, 109-17.
32. Schaffnit, P.; Stallybrass, C.; Konrad, J.; Stein, F.; Weinberg, M. A Scheil–Gulliver model dedicated to the solidification of steel. Calphad 2015, 48, 184-8.
33. Schmid-Fetzer, R.; Zhang, F. The light alloy Calphad databases PanAl and PanMg. Calphad 2018, 61, 246-63.
34. Li, Z.; Hu, B.; Yao, F.; et al. Anomalous increase in thermal conductivity of Mg solid solutions by co-doping with two solute elements. Acta. Mater. 2025, 285, 120708.
35. Wang, D.; Amsler, M.; Hegde, V. I.; et al. Crystal structure, energetics, and phase stability of strengthening precipitates in Mg alloys: a first-principles study. Acta. Mater. 2018, 158, 65-78.
36. Wang, S.; Zhao, Y.; Guo, H.; Lan, F.; Hou, H. Mechanical and thermal conductivity properties of enhanced phases in Mg-Zn-Zr system from first principles. Materials 2018, 11, 2010.
37. Madsen, G. K.; Carrete, J.; Verstraete, M. J. BoltzTraP2, a program for interpolating band structures and calculating semi-classical transport coefficients. Comput. Phys. Commun. 2018, 231, 140-5.
38. Chandrashekar, G.; Sahin, F. A survey on feature selection methods. Comput. Electr. Eng. 2014, 40, 16-28.
39. Jaiswal, J. K.; Samikannu, R. Application of random forest algorithm on feature subset selection and classification and regression. In: 2017 World Congress on Computing and Communication Technologies (WCCCT), Tiruchirappalli, India, 02-04 Feb, 2017. IEEE, 2017; pp. 65-8.
40. Dong, S.; Wang, Y.; Li, J.; Li, Y.; Wang, L.; Zhang, J. Machine learning aided prediction and design for the mechanical properties of magnesium alloys. Met. Mater. Int. 2024, 30, 593-606.
41. de Myttenaere, A.; Golden, B.; Le Grand, B.; Rossi, F. Mean absolute percentage error for regression models. Neurocomputing 2016, 192, 38-48.
42. Cui, Y.; Li, S.; Ying, T.; Bao, H.; Zeng, X. Research on the thermal conductivity of metals based on first principles. Acta. Metall. Sin. 2021, 57, 375-84.