REFERENCES
1. Li, N.; Ren, J.; Wang, L.; Zhang, G.; Hänggi, P.; Li, B. Colloquium: Phononics: manipulating heat flow with electronic analogs and beyond. Rev. Mod. Phys. 2012, 84, 1045.
2. van Erp R, Soleimanzadeh R, Nela L, Kampitsis G, Matioli E. Co-designing electronics with microfluidics for more sustainable cooling. Nature 2020, 585, 211-6.
3. Kim, H. S.; Liu, W.; Chen, G.; Chu, C. W.; Ren, Z. Relationship between thermoelectric figure of merit and energy conversion efficiency. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 8205-10.
4. Ouyang, H.; Gu, Y.; Gao, Z.; et al. Kirigami-inspired thermal regulator. Phys. Rev. Appl. 2023, 19, L011001.
5. Kang, J. S.; Li, M.; Wu, H.; Nguyen, H.; Aoki, T.; Hu, Y. Integration of boron arsenide cooling substrates into gallium nitride devices. Nat. Electron. 2021, 4, 416-23.
6. Xu, L.; Wang, X.; Wang, Y.; Gao, Z.; Ding, X.; Xiao, Y. Enhanced average power factor and ZT value in PbSe thermoelectric material with dual interstitial doping. Energy. Environ. Sci. 2024, 17, 2018-27.
7. Broido, D. A.; Malorny, M.; Birner, G.; Mingo, N.; Stewart, D. A. Intrinsic lattice thermal conductivity of semiconductors from first principles. Appl. Phys. Lett. 2007, 91, 231922.
8. Stackhouse, S.; Stixrude, L. Theoretical methods for calculating the lattice thermal conductivity of minerals. Rev. Mineral. Geochem. 2010, 71, 253-69.
9. Tadano, T.; Tsuneyuki, S. Self-consistent phonon calculations of lattice dynamical properties in cubic SrTiO3 with first-principles anharmonic force constants. Phys. Rev. B. 2015, 92, 054301.
10. Carbogno, C.; Ramprasad, R.; Scheffler, M. Ab initio green-kubo approach for the thermal conductivity of solids. Phys. Rev. Lett. 2017, 118, 175901.
11. Fan, Z.; Pereira, L. F. C.; Wang, H.; Zheng, J.; Donadio, D.; Harju, A. Force and heat current formulas for many-body potentials in molecular dynamics simulations with applications to thermal conductivity calculations. Phys. Rev. B. 2015, 92, 094301.
12. Yusuf, A.; Ballikaya, S. Electrical, thermomechanical and cost analyses of a low-cost thermoelectric generator. Energy 2022, 241, 122934.
13. Luo, Y.; Li, M.; Yuan, H.; Liu, H.; Fang, Y. Predicting lattice thermal conductivity via machine learning: a mini review. npj. Comput. Mater. 2023, 9, 964.
14. Mishin, Y. Machine-learning interatomic potentials for materials science. Acta. Mater. 2021, 214, 116980.
15. Liu, C.; Wu, C.; Zhao, Y.; et al. Actively and reversibly controlling thermal conductivity in solid materials. Phys. Rep. 2024, 1058, 1-32.
16. Shi, X. L.; Wang, L.; Lyu, W.; et al. Advancing flexible thermoelectrics for integrated electronics. Chem. Soc. Rev. 2024, 53, 9254-305.
17. Callaway, J. Model for lattice thermal conductivity at low temperatures. Phys. Rev. 1959, 113, 1046-51.
18. Zhang, Y. First-principles Debye–Callaway approach to lattice thermal conductivity. J. Materiomics. 2016, 2, 237-47.
19. Slack, G. Nonmetallic crystals with high thermal conductivity. J. Phys. Chem. Solids. 1973, 34, 321-35.
20. Morelli, D. T.; Slack, G. A. High lattice thermal conductivity solids. In: Shindé SL, Goela JS, editors. High thermal conductivity materials. New York: Springer-Verlag; 2006. pp. 37-68.
21. Nielsen, M. D.; Ozolins, V.; Heremans, J. P. Lone pair electrons minimize lattice thermal conductivity. Energy. Environ. Sci. 2013, 6, 570-8.
22. Chang, C.; Zhao, L. Anharmoncity and low thermal conductivity in thermoelectrics. Mater. Today. Phys. 2018, 4, 50-7.
23. Virkar, A. V.; Cutler, R. A. Fabrication of high-thermal-conductivity polycrystalline aluminum nitride: thermodynamic and kinetic aspects of oxygen removal. In: Shindé SL, Goela JS, editors. High thermal conductivity materials. New York: Springer-Verlag; 2006. pp. 143-66.
24. Chen, S.; Chen, Y.; Yan, W.; Gao, T. First-principles investigation of elastic anisotropy and thermal transport property of transition metal monosilicides CrSi, TiSi, and ZrSi under pressure. Mater. Today. Commun. 2024, 39, 108958.
25. Cao, Y.; Dai, S.; Wang, X.; et al. High-throughput screening of potentially ductile and low thermal conductivity ABX3 (X = S, Se, Te) thermoelectric perovskites. Appl. Phys. Lett. 2024, 124, 092101.
26. Li, R.; Li, X.; Xi, L.; Yang, J.; Singh, D. J.; Zhang, W. High-throughput screening for advanced thermoelectric materials: diamond-like ABX2 compounds. ACS. Appl. Mater. Interfaces. 2019, 11, 24859-66.
27. Qin, G.; Huang, A.; Liu, Y.; et al. High-throughput computational evaluation of lattice thermal conductivity using an optimized Slack model. Mater. Adv. 2022, 3, 6826-30.
28. Cao, Y.; Zhu, Z.; Li, X.; et al. Unraveling the relationships between chemical bonding and thermoelectric properties: n-type ABO3 perovskites. J. Mater. Chem. A. 2022, 10, 11039-45.
29. Wang, X.; Shu, G.; Zhu, G.; et al. An interpretable formula for lattice thermal conductivity of crystals. Mater. Today. Phys. 2024, 48, 101549.
30. Anderson, O. L. A simplified method for calculating the debye temperature from elastic constants. J. Phys. Chem. Solids. 1963, 24, 909-17.
31. Belomestnykh, V. N. The acoustical Grüneisen constants of solids. Tech. Phys. Lett. 2004, 30, 91-3.
32. Ju, S.; Yoshida, R.; Liu, C.; et al. Exploring diamondlike lattice thermal conductivity crystals via feature-based transfer learning. Phys. Rev. Mater. 2021, 5, 053801.
33. Xie, T.; Grossman, J. C. Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties. Phys. Rev. Lett. 2018, 120, 145301.
34. Zhu, T.; He, R.; Gong, S.; et al. Charting lattice thermal conductivity for inorganic crystals and discovering rare earth chalcogenides for thermoelectrics. Energy. Environ. Sci. 2021, 14, 3559-66.
35. Vaitesswar, U. S.; Bash, D.; Huang, T.; et al. Machine learning based feature engineering for thermoelectric materials by design. Digit. Discov. 2024, 3, 210-20.
36. Omee, S. S.; Fu, N.; Dong, R.; Hu, M.; Hu, J. Structure-based out-of-distribution (OOD) materials property prediction: a benchmark study. npj. Comput. Mater. 2024, 10, 1316.
37. Meredig, B.; Antono, E.; Church, C.; et al. Can machine learning identify the next high-temperature superconductor? Examining extrapolation performance for materials discovery. Mol. Syst. Des. Eng. 2018, 3, 819-25.
38. Merchant, A.; Batzner, S.; Schoenholz, S. S.; Aykol, M.; Cheon, G.; Cubuk, E. D. Scaling deep learning for materials discovery. Nature 2023, 624, 80-5.
39. Griesemer, S. D.; Xia, Y.; Wolverton, C. Accelerating the prediction of stable materials with machine learning. Nat. Comput. Sci. 2023, 3, 934-45.
40. Wang, X.; Gao, Z.; Zhu, G.; et al. Role of high-order anharmonicity and off-diagonal terms in thermal conductivity: a case study of multiphase CsPbBr3. Phys. Rev. B. 2023, 107, 214308.
41. Herring, C. Role of low-energy phonons in thermal conduction. Phys. Rev. 1954, 95, 954-65.
42. Jia, T.; Chen, G.; Zhang, Y. Lattice thermal conductivity evaluated using elastic properties. Phys. Rev. B. 2017, 95, 155206.
43. Knoop, F.; Purcell, T. A. R.; Scheffler, M.; Carbogno, C. Anharmonicity measure for materials. Phys. Rev. Mater. 2020, 4, 083809.
44. Belomestnykh, V. N.; Tesleva, E. P. Interrelation between anharmonicity and lateral strain in quasi-isotropic polycrystalline solids. Tech. Phys. 2004, 49, 1098-100.
45. Chung, D. H.; Buessem, W. R. The Voigt-Reuss-Hill approximation and elastic moduli of polycrystalline MgO, CaF2, β-ZnS, ZnSe, and CdTe. J. Appl. Phys. 1967, 38, 2535-40.
46. Xiao, Y.; Chang, C.; Pei, Y.; et al. Origin of low thermal conductivity in SnSe. Phys. Rev. B. 2016, 94, 125203.
47. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. Condens. Matter. 1996, 54, 11169-86.
48. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B. Condens. Matter. 1994, 50, 17953-79.
49. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 1999, 59, 1758-75.
50. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-8.
51. Li, W.; Carrete, J.; A. Katcho N, Mingo N. ShengBTE: A solver of the Boltzmann transport equation for phonons. Comput. Phys. Commun. 2014, 185, 1747-58.
52. Dunn, A.; Wang, Q.; Ganose, A.; Dopp, D.; Jain, A. Benchmarking materials property prediction methods: the Matbench test set and Automatminer reference algorithm. npj. Comput. Mater. 2020, 6, 406.
54. Beasley, J. D. Thermal conductivities of some novel nonlinear optical materials. Appl. Opt. 1994, 33, 1000-3.
55. Toberer, E. S.; Zevalkink, A.; Snyder, G. J. Phonon engineering through crystal chemistry. J. Mater. Chem. 2011, 21, 15843.
56. Slack, G. A. Thermal conductivity of MgO, Al2O3, MgAl2O4, and Fe3O4 crystals from 3° to 300° K. Phys. Rev. 1962, 126, 427-41.
57. Bjerg, L.; Iversen, B. B.; Madsen, G. K. H. Modeling the thermal conductivities of the zinc antimonides ZnSb and Zn4Sb3. Phys. Rev. B. 2014, 89, 024304.
58. Toher, C.; Oses, C.; Plata, J. J.; et al. Combining the AFLOW GIBBS and elastic libraries to efficiently and robustly screen thermomechanical properties of solids. Phys. Rev. Mater. 2017, 1, 015401.
59. Curtarolo, S.; Setyawan, W.; Hart, G. L.; et al. AFLOW: an automatic framework for high-throughput materials discovery. Comput. Mater. Sci. 2012, 58, 218-26.
60. Wang, Y.; Gao, Z.; Wang, X.; et al. Anomalous thermal conductivity in 2D silica nanocages of immobilizing noble gas atom. Appl. Phys. Lett. 2024, 124, 122205.
61. Zhou, F.; Nielson, W.; Xia, Y.; Ozoliņš, V. Lattice anharmonicity and thermal conductivity from compressive sensing of first-principles calculations. Phys. Rev. Lett. 2014, 113, 185501.
62. Hao, Y.; Zuo, Y.; Zheng, J.; et al. Machine learning for predicting ultralow thermal conductivity and high ZT in complex thermoelectric materials. ACS. Appl. Mater. Interfaces. 2024, 16, 47866-78.
63. Zhang, Y.; Ke, X.; Chen, C.; Yang, J.; Kent, P. R. C. Thermodynamic properties of PbTe, PbSe, and PbS: first-principles study. Phys. Rev. B. 2009, 80, 024304.
64. Zhao, L. D.; Lo, S. H.; Zhang, Y.; et al. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 2014, 508, 373-7.
65. Pashinkin, A. S.; Mikhailova, M. S.; Malkova, A. S.; Fedorov, V. A. Heat capacity and thermodynamic properties of lead selenide and lead telluride. Inorg. Mater. 2009, 45, 1226-9.
66. Tian, Z.; Garg, J.; Esfarjani, K.; Shiga, T.; Shiomi, J.; Chen, G. Phonon conduction in PbSe, PbTe, and PbTe1-xSex from first-principles calculations. Phys. Rev. B. 2012, 85, 184303.
67. Zhou, Z.; Cao, G.; Liu, J.; Liu, H. High-throughput prediction of the carrier relaxation time via data-driven descriptor. npj. Comput. Mater. 2020, 6, 417.
68. Madsen, G. K.; Singh, D. J. BoltzTraP. A code for calculating band-structure dependent quantities. Comput. Phys. Commun. 2006, 175, 67-71.
69. Li, X.; Zhang, Z.; Xi, J.; et al. TransOpt. A code to solve electrical transport properties of semiconductors in constant electron–phonon coupling approximation. Comput. Mater. Sci. 2021, 186, 110074.
70. Karamad, M.; Magar, R.; Shi, Y.; Siahrostami, S.; Gates, I. D.; Barati, F. A. Orbital graph convolutional neural network for material property prediction. Phys. Rev. Mater. 2020, 4, 093801.
71. Chen, C.; Ye, W.; Zuo, Y.; Zheng, C.; Ong, S. P. Graph networks as a universal machine learning framework for molecules and crystals. Chem. Mater. 2019, 31, 3564-72.
72. Cheng, J.; Zhang, C.; Dong, L. A geometric-information-enhanced crystal graph network for predicting properties of materials. Commun. Mater. 2021, 2, 194.
73. Choudhary, K.; Decost, B. Atomistic line graph neural network for improved materials property predictions. npj. Comput. Mater. 2021, 7, 650.
74. Louis, S. Y.; Zhao, Y.; Nasiri, A.; et al. Graph convolutional neural networks with global attention for improved materials property prediction. Phys. Chem. Chem. Phys. 2020, 22, 18141-8.
75. Omee, S. S.; Louis, S. Y.; Fu, N.; et al. Scalable deeper graph neural networks for high-performance materials property prediction. Patterns 2022, 3, 100491.
76. Isayev, O.; Oses, C.; Toher, C.; Gossett, E.; Curtarolo, S.; Tropsha, A. Universal fragment descriptors for predicting properties of inorganic crystals. Nat. Commun. 2017, 8, 15679.
77. Ward, L.; Liu, R.; Krishna, A.; et al. Including crystal structure attributes in machine learning models of formation energies via Voronoi tessellations. Phys. Rev. B. 2017, 96, 024104.
78. Ruff, R.; Reiser, P.; Stühmer, J.; Friederich, P. Connectivity optimized nested line graph networks for crystal structures. Digit. Discov. 2024, 3, 594-601.