REFERENCES

1. NREL. Best research-cell efficiency chart. Available from: https://www.nrel.gov/pv/cell-efficiency.html. [Last accessed on 30 Dec 2024].

2. Zhang, C.; Park, N. Materials and methods for cost-effective fabrication of perovskite photovoltaic devices. Commun. Mater. 2024, 5, 636.

3. Abbasi, S.; Wang, X.; Tipparak, P.; et al. Proper annealing process for a cost effective and superhydrophobic ambient-atmosphere fabricated perovskite solar cell. Mat. Sci. Semicon. Proc. 2023, 155, 107241.

4. Penpong, K.; Seriwatanachai, C.; Naikaew, A.; et al. Robust perovskite formation via vacuum thermal annealing for indoor perovskite solar cells. Sci. Rep. 2023, 13, 10933.

5. Huddy, J. E.; Ye, Y.; Scheideler, W. J. Eliminating the perovskite solar cell manufacturing bottleneck via high-speed flexography. Adv. Mater. Technol. 2022, 7, 2101282.

6. Lavery, B. W.; Kumari, S.; Konermann, H.; Draper, G. L.; Spurgeon, J.; Druffel, T. Intense pulsed light sintering of CH3NH3PbI3 solar cells. ACS. Appl. Mater. Interfaces. 2016, 8, 8419-26.

7. Xu, W.; Daunis, T. B.; Piper, R. T.; Hsu, J. W. Effects of photonic curing processing conditions on MAPbI3 film properties and solar cell performance. ACS. Appl. Energy. Mater. 2020, 3, 8636-45.

8. Ghahremani, A. H.; Pishgar, S.; Bahadur, J.; Druffel, T. Intense pulse light annealing of perovskite photovoltaics using gradient flashes. ACS. Appl. Energy. Mater. 2020, 3, 11641-54.

9. Serafini, P.; Boix, P. P.; Barea, E. M.; Edvinson, T.; Sánchez, S.; Mora-Seró, I. Photonic processing of MAPbI3 films by flash annealing and rapid growth for high-performance perovskite solar cells. Solar. RRL. 2022, 6, 2200641.

10. Ankireddy, K.; Ghahremani, A. H.; Martin, B.; Gupta, G.; Druffel, T. Rapid thermal annealing of CH3NH3PbI3 perovskite thin films by intense pulsed light with aid of diiodomethane additive. J. Mater. Chem. A. 2018, 6, 9378-83.

11. Xu, W.; Bonner, J. C.; Piper, R. T.; Hsu, J. W. P. Effects of residual DMSO adduct on photonically cured MAPbI3 solar cells. J. Phys. Chem. C. 2023, 127, 14933-9.

12. Xu, W.; Liu, Z.; Piper, R. T.; Hsu, J. W. Bayesian optimization of photonic curing process for flexible perovskite photovoltaic devices. Sol. Energ. Mat. Sol. C. 2023, 249, 112055.

13. Yılmaz, B.; Yıldırım, R. Critical review of machine learning applications in perovskite solar research. Nano. Energy. 2021, 80, 105546.

14. Song, Q.; Bai, Y.; Chen, Q. The spring of processing chemistry in perovskite solar cells-bayesian optimization. J. Phys. Chem. Lett. 2022, 13, 10741-50.

15. Srivastava, M.; Howard, J. M.; Gong, T.; Rebello, S. D. M.; Leite, M. S. Machine learning roadmap for perovskite photovoltaics. J. Phys. Chem. Lett. 2021, 12, 7866-77.

16. Higgins, K.; Valleti, S. M.; Ziatdinov, M.; Kalinin, S. V.; Ahmadi, M. Chemical robotics enabled exploration of stability in multicomponent lead halide perovskites via machine learning. ACS. Energy. Lett. 2020, 5, 3426-36.

17. Taherimakhsousi, N.; Fievez, M.; Macleod, B. P.; et al. A machine vision tool for facilitating the optimization of large-area perovskite photovoltaics. npj. Comput. Mater. 2021, 7, 657.

18. Kumar, V.; Pandey, A.; Vishvakarma, A.; Kumar, A.; Kumar, L.; Pal, S. B. Growth of MAPbI3 perovskite films on MWCNT-modified TiO2 thin films for solar cell applications. Inorg. Chem. Commun. 2024, 163, 112360.

19. Tian, S. I. P.; Liu, Z.; Chellappan, V.; et al.

20. Qaid, S. M. H.; Ghaithan, H. M.; Al-Asbahi, B. A.; Aldwayyan, A. S. Solvent effects on the structural and optical properties of MAPbI3 perovskite thin film for photovoltaic active layer. Coatings 2022, 12, 549.

21. Standard test methods for determining average grain size. 2021.

22. Dunlap-Shohl, W. A.; Li, T.; Mitzi, D. B. Interfacial effects during rapid lamination within MAPbI3 thin films and solar cells. ACS. Appl. Energy. Mater. 2019, 2, 5083-93.

23. Thampy, S.; Zhang, B.; Hong, K.; Cho, K.; Hsu, J. W. P. Altered stability and degradation pathway of CH3NH3PbI3 in contact with metal oxide. ACS. Energy. Lett. 2020, 5, 1147-52.

24. Lee, S. H.; Hong, S.; Kim, H. J. Selection of a suitable solvent additive for 2-methoxyethanol-based antisolvent-free perovskite film fabrication. ACS. Appl. Mater. Interfaces. 2022, 14, 39132-40.

25. Bhandari, B.; Bonner, J. C.; Piper, R. T.; Hsu, J. W. P. Effects of transparent conducting electrodes and hole transport layers on the performance of MAPbI3 solar cells fabricated on PET substrates. Flex. Print. Electron. 2024, 9, 035002.

26. Mohanraj, J.; Samanta, B.; Almora, O.; et al. NiOx passivation in perovskite solar cells: from surface reactivity to device performance. ACS. Appl. Mater. Interfaces. 2024, 16, 42835-50.

27. Phung, N.; Verheijen, M.; Todinova, A.; et al. Enhanced self-assembled monolayer surface coverage by ALD NiO in p-i-n perovskite solar cells. ACS. Appl. Mater. Interfaces. 2022, 14, 2166-76.

28. Gower, J. C. Generalized procrustes analysis. Psychometrika 1975, 40, 33-51.

29.

30. Eiter, T.; Mannila, H. Computing discrete fréchet distance. 1994. Available from: https://www.researchgate.net/profile/Thomas-Eiter-2/publication/228723178_Computing_Discrete_Frechet_Distance/links/5714d93908aebda86c0d1a7b/Computing-Discrete-Frechet-Distance.pdf. [Last accessed on 30 Dec 2024].

31. Danziger, Z. Discrete frechet distance. MATLAB Central File Exchange. 2024. Available from: https://www.mathworks.com/matlabcentral/fileexchange/31922-discrete-frechet-distance. [Last accessed on 30 Dec 2024].

32. Gongora, A. E.; Xu, B.; Perry, W.; et al. A Bayesian experimental autonomous researcher for mechanical design. Sci. Adv. 2020, 6, eaaz1708.

33. Rohr, B.; Stein, H. S.; Guevarra, D.; et al. Benchmarking the acceleration of materials discovery by sequential learning. Chem. Sci. 2020, 11, 2696-706.

34. Liu, Z.; Rolston, N.; Flick, A. C.; et al. Machine learning with knowledge constraints for process optimization of open-air perovskite solar cell manufacturing. Joule 2022, 6, 834-49.

35. Kirillov, A.; Mintun, E.; Ravi, N.; et al. Segment anything. arXiv 2023, arXiv, 2304.02643. Available from: https://doi.org/10.48550/arXiv.2304.02643.

36. Wu, G.; Cai, M.; Cao, Y.; et al. Enlarging grain sizes for efficient perovskite solar cells by methylamine chloride assisted recrystallization. J. Energy. Chem. 2022, 65, 55-61.

37. Jin, H.; Farrar, M. D.; Ball, J. M.; et al. Alumina nanoparticle interfacial buffer layer for low-bandgap lead-tin perovskite solar cells. Adv. Funct. Mater. 2023, 33, 2303012.

38. Cui, P.; Fu, P.; Wei, D.; et al. Reduced surface defects of organometallic perovskite by thermal annealing for highly efficient perovskite solar cells. RSC. Adv. 2015, 5, 75622-9.

39. Wang, T.; Lian, G.; Huang, L.; et al. MAPbI3 quasi-single-crystal films composed of large-sized grains with deep boundary fusion for sensitive vis-NIR photodetectors. ACS. Appl. Mater. Interfaces. 2020, 12, 38314-24.

40. Giesbrecht, N.; Schlipf, J.; Grill, I.; et al. Single-crystal-like optoelectronic-properties of MAPbI3 perovskite polycrystalline thin films. J. Mater. Chem. A. 2018, 6, 4822-8.

41. Kim, H. D.; Ohkita, H.; Benten, H.; Ito, S. Photovoltaic performance of perovskite solar cells with different grain sizes. Adv. Mater. 2016, 28, 917-22.

42. deQuilettes, D. W.; Vorpahl, S. M.; Stranks, S. D.; et al. Solar cells. Impact of microstructure on local carrier lifetime in perovskite solar cells. Science 2015, 348, 683-6.

43. Ahmad, S.; Ma, R.; Zheng, J.; et al. Suppressing nickel oxide/perovskite interface redox reaction and defects for highly performed and stable inverted perovskite solar cells. Small. Methods. 2022, 6, e2200787.

Journal of Materials Informatics
ISSN 2770-372X (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/