REFERENCES
1. NREL. Best research-cell efficiency chart. Available from: https://www.nrel.gov/pv/cell-efficiency.html. [Last accessed on 30 Dec 2024].
2. Zhang, C.; Park, N. Materials and methods for cost-effective fabrication of perovskite photovoltaic devices. Commun. Mater. 2024, 5, 636.
3. Abbasi, S.; Wang, X.; Tipparak, P.; et al. Proper annealing process for a cost effective and superhydrophobic ambient-atmosphere fabricated perovskite solar cell. Mat. Sci. Semicon. Proc. 2023, 155, 107241.
4. Penpong, K.; Seriwatanachai, C.; Naikaew, A.; et al. Robust perovskite formation via vacuum thermal annealing for indoor perovskite solar cells. Sci. Rep. 2023, 13, 10933.
5. Huddy, J. E.; Ye, Y.; Scheideler, W. J. Eliminating the perovskite solar cell manufacturing bottleneck via high-speed flexography. Adv. Mater. Technol. 2022, 7, 2101282.
6. Lavery, B. W.; Kumari, S.; Konermann, H.; Draper, G. L.; Spurgeon, J.; Druffel, T. Intense pulsed light sintering of CH3NH3PbI3 solar cells. ACS. Appl. Mater. Interfaces. 2016, 8, 8419-26.
7. Xu, W.; Daunis, T. B.; Piper, R. T.; Hsu, J. W. Effects of photonic curing processing conditions on MAPbI3 film properties and solar cell performance. ACS. Appl. Energy. Mater. 2020, 3, 8636-45.
8. Ghahremani, A. H.; Pishgar, S.; Bahadur, J.; Druffel, T. Intense pulse light annealing of perovskite photovoltaics using gradient flashes. ACS. Appl. Energy. Mater. 2020, 3, 11641-54.
9. Serafini, P.; Boix, P. P.; Barea, E. M.; Edvinson, T.; Sánchez, S.; Mora-Seró, I. Photonic processing of MAPbI3 films by flash annealing and rapid growth for high-performance perovskite solar cells. Solar. RRL. 2022, 6, 2200641.
10. Ankireddy, K.; Ghahremani, A. H.; Martin, B.; Gupta, G.; Druffel, T. Rapid thermal annealing of CH3NH3PbI3 perovskite thin films by intense pulsed light with aid of diiodomethane additive. J. Mater. Chem. A. 2018, 6, 9378-83.
11. Xu, W.; Bonner, J. C.; Piper, R. T.; Hsu, J. W. P. Effects of residual DMSO adduct on photonically cured MAPbI3 solar cells. J. Phys. Chem. C. 2023, 127, 14933-9.
12. Xu, W.; Liu, Z.; Piper, R. T.; Hsu, J. W. Bayesian optimization of photonic curing process for flexible perovskite photovoltaic devices. Sol. Energ. Mat. Sol. C. 2023, 249, 112055.
13. Yılmaz, B.; Yıldırım, R. Critical review of machine learning applications in perovskite solar research. Nano. Energy. 2021, 80, 105546.
14. Song, Q.; Bai, Y.; Chen, Q. The spring of processing chemistry in perovskite solar cells-bayesian optimization. J. Phys. Chem. Lett. 2022, 13, 10741-50.
15. Srivastava, M.; Howard, J. M.; Gong, T.; Rebello, S. D. M.; Leite, M. S. Machine learning roadmap for perovskite photovoltaics. J. Phys. Chem. Lett. 2021, 12, 7866-77.
16. Higgins, K.; Valleti, S. M.; Ziatdinov, M.; Kalinin, S. V.; Ahmadi, M. Chemical robotics enabled exploration of stability in multicomponent lead halide perovskites via machine learning. ACS. Energy. Lett. 2020, 5, 3426-36.
17. Taherimakhsousi, N.; Fievez, M.; Macleod, B. P.; et al. A machine vision tool for facilitating the optimization of large-area perovskite photovoltaics. npj. Comput. Mater. 2021, 7, 657.
18. Kumar, V.; Pandey, A.; Vishvakarma, A.; Kumar, A.; Kumar, L.; Pal, S. B. Growth of MAPbI3 perovskite films on MWCNT-modified TiO2 thin films for solar cell applications. Inorg. Chem. Commun. 2024, 163, 112360.
20. Qaid, S. M. H.; Ghaithan, H. M.; Al-Asbahi, B. A.; Aldwayyan, A. S. Solvent effects on the structural and optical properties of MAPbI3 perovskite thin film for photovoltaic active layer. Coatings 2022, 12, 549.
22. Dunlap-Shohl, W. A.; Li, T.; Mitzi, D. B. Interfacial effects during rapid lamination within MAPbI3 thin films and solar cells. ACS. Appl. Energy. Mater. 2019, 2, 5083-93.
23. Thampy, S.; Zhang, B.; Hong, K.; Cho, K.; Hsu, J. W. P. Altered stability and degradation pathway of CH3NH3PbI3 in contact with metal oxide. ACS. Energy. Lett. 2020, 5, 1147-52.
24. Lee, S. H.; Hong, S.; Kim, H. J. Selection of a suitable solvent additive for 2-methoxyethanol-based antisolvent-free perovskite film fabrication. ACS. Appl. Mater. Interfaces. 2022, 14, 39132-40.
25. Bhandari, B.; Bonner, J. C.; Piper, R. T.; Hsu, J. W. P. Effects of transparent conducting electrodes and hole transport layers on the performance of MAPbI3 solar cells fabricated on PET substrates. Flex. Print. Electron. 2024, 9, 035002.
26. Mohanraj, J.; Samanta, B.; Almora, O.; et al. NiOx passivation in perovskite solar cells: from surface reactivity to device performance. ACS. Appl. Mater. Interfaces. 2024, 16, 42835-50.
27. Phung, N.; Verheijen, M.; Todinova, A.; et al. Enhanced self-assembled monolayer surface coverage by ALD NiO in p-i-n perovskite solar cells. ACS. Appl. Mater. Interfaces. 2022, 14, 2166-76.
29.
30. Eiter, T.; Mannila, H. Computing discrete fréchet distance. 1994. Available from: https://www.researchgate.net/profile/Thomas-Eiter-2/publication/228723178_Computing_Discrete_Frechet_Distance/links/5714d93908aebda86c0d1a7b/Computing-Discrete-Frechet-Distance.pdf. [Last accessed on 30 Dec 2024].
31. Danziger, Z. Discrete frechet distance. MATLAB Central File Exchange. 2024. Available from: https://www.mathworks.com/matlabcentral/fileexchange/31922-discrete-frechet-distance. [Last accessed on 30 Dec 2024].
32. Gongora, A. E.; Xu, B.; Perry, W.; et al. A Bayesian experimental autonomous researcher for mechanical design. Sci. Adv. 2020, 6, eaaz1708.
33. Rohr, B.; Stein, H. S.; Guevarra, D.; et al. Benchmarking the acceleration of materials discovery by sequential learning. Chem. Sci. 2020, 11, 2696-706.
34. Liu, Z.; Rolston, N.; Flick, A. C.; et al. Machine learning with knowledge constraints for process optimization of open-air perovskite solar cell manufacturing. Joule 2022, 6, 834-49.
35. Kirillov, A.; Mintun, E.; Ravi, N.; et al. Segment anything. arXiv 2023, arXiv, 2304.02643. Available from:
36. Wu, G.; Cai, M.; Cao, Y.; et al. Enlarging grain sizes for efficient perovskite solar cells by methylamine chloride assisted recrystallization. J. Energy. Chem. 2022, 65, 55-61.
37. Jin, H.; Farrar, M. D.; Ball, J. M.; et al. Alumina nanoparticle interfacial buffer layer for low-bandgap lead-tin perovskite solar cells. Adv. Funct. Mater. 2023, 33, 2303012.
38. Cui, P.; Fu, P.; Wei, D.; et al. Reduced surface defects of organometallic perovskite by thermal annealing for highly efficient perovskite solar cells. RSC. Adv. 2015, 5, 75622-9.
39. Wang, T.; Lian, G.; Huang, L.; et al. MAPbI3 quasi-single-crystal films composed of large-sized grains with deep boundary fusion for sensitive vis-NIR photodetectors. ACS. Appl. Mater. Interfaces. 2020, 12, 38314-24.
40. Giesbrecht, N.; Schlipf, J.; Grill, I.; et al. Single-crystal-like optoelectronic-properties of MAPbI3 perovskite polycrystalline thin films. J. Mater. Chem. A. 2018, 6, 4822-8.
41. Kim, H. D.; Ohkita, H.; Benten, H.; Ito, S. Photovoltaic performance of perovskite solar cells with different grain sizes. Adv. Mater. 2016, 28, 917-22.
42. deQuilettes, D. W.; Vorpahl, S. M.; Stranks, S. D.; et al. Solar cells. Impact of microstructure on local carrier lifetime in perovskite solar cells. Science 2015, 348, 683-6.