REFERENCES

1. Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug. Deliv. Rev. 1997, 23, 3-25.

2. Sun, J.; Li, D.; Zou, J.; et al. Accelerating the discovery of acceptor materials for organic solar cells by deep learning. npj. Comput. Mater. 2024, 10, 1367.

3. Zhang, R.; Chen, H.; Wang, T.; et al. Equally high efficiencies of organic solar cells processed from different solvents reveal key factors for morphology control. Nat Energy. 2024.

4. Procacci, P.; Guarnieri, G. SAMPL6 blind predictions of water-octanol partition coefficients using nonequilibrium alchemical approaches. J. Comput. Aided. Mol. Des. 2020, 34, 371-84.

5. Nikitin, A. Non-zero Lennard-Jones parameters for the Toukan-Rahman water model: more accurate calculations of the solvation free energy of organic substances. J. Comput. Aided. Mol. Des. 2020, 34, 437-41.

6. Ali, H. S.; Henchman, R. H. Energy-entropy multiscale cell correlation method to predict toluene-water log P in the SAMPL9 challenge. Phys. Chem. Chem. Phys. 2023, 25, 27524-31.

7. Tielker, N.; Tomazic, D.; Eberlein, L.; Güssregen, S.; Kast, S. M. The SAMPL6 challenge on predicting octanol-water partition coefficients from EC-RISM theory. J. Comput. Aided. Mol. Des. 2020, 34, 453-61.

8. Guan, D.; Lui, R.; Matthews, S. LogP prediction performance with the SMD solvation model and the M06 density functional family for SAMPL6 blind prediction challenge molecules. J. Comput. Aided. Mol. Des. 2020, 34, 511-22.

9. Loschen, C.; Reinisch, J.; Klamt, A. COSMO-RS based predictions for the SAMPL6 logP challenge. J. Comput. Aided. Mol. Des. 2020, 34, 385-92.

10. Prasad, S.; Brooks, B. R. A deep learning approach for the blind logP prediction in SAMPL6 challenge. J. Comput. Aided. Mol. Des. 2020, 34, 535-42.

11. Lui, R.; Guan, D.; Matthews, S. A comparison of molecular representations for lipophilicity quantitative structure-property relationships with results from the SAMPL6 logP Prediction Challenge. J. Comput. Aided. Mol. Des. 2020, 34, 523-34.

12. Ulrich, N.; Goss, K. U.; Ebert, A. Exploring the octanol-water partition coefficient dataset using deep learning techniques and data augmentation. Commun. Chem. 2021, 4, 90.

13. Zamora, W. J.; Viayna, A.; Pinheiro, S.; et al. Prediction of toluene/water partition coefficients in the SAMPL9 blind challenge: assessment of machine learning and IEF-PCM/MST continuum solvation models. Phys. Chem. Chem. Phys. 2023, 25, 17952-65.

14. Liu, J. B.; Wang, X.; Cao, J. The coherence and properties analysis of balanced 2p-ary tree networks. IEEE. Trans. Netw. Sci. Eng. 2024, 11, 4719-28.

15. Nevolianis, T.; Rittig, J. G.; Mitsos, A.; Leonhard, K. Multi-fidelity graph neural networks for predicting toluene/water partition coefficients. ChemRxiv 2024. Available online: https://doi.org/10.26434/chemrxiv. (accessed 9 Jan 2024).

16. Mansouri, K.; Grulke, C. M.; Judson, R. S.; Williams, A. J. OPERA models for predicting physicochemical properties and environmental fate endpoints. J. Cheminform. 2018, 10, 10.

17. Schuur, J. H.; Selzer, P.; Gasteiger, J. The coding of the three-dimensional structure of molecules by molecular transforms and its application to structure-spectra correlations and studies of biological activity. J. Chem. Inf. Comput. Sci. 1996, 36, 334-44.

18. Gasteiger, J.; Sadowski, J.; Schuur, J.; Selzer, P.; Steinhauer, L.; Steinhauer, V. Chemical information in 3D space. J. Chem. Inf. Comput. Sci. 1996, 36, 1030-7.

19. Ma, J.; Du, Z.; Lei, Z.; et al. Intermolecular 3D-MoRSE descriptors for fast and accurate prediction of electronic couplings in organic semiconductors. J. Chem. Inf. Model. 2023, 63, 5089-96.

20. Ye, X.; Cui, N.; Ou, W.; et al. Explainable optimized 3D-MoRSE descriptors for the power conversion efficiency prediction of molecular passivated perovskite solar cells through machine learning. J. Mater. Chem. A. 2024, 12, 26224-33.

21. Mansouri, K.; Sahu, R. OPERA. Available from: https://github.com/kmansouri/OPERA.git. [Last accessed on 9 Jan 2025].

22. Mobley, D. L.; Amezcua, M.; Dani. SAMPL9. Available from: https://github.com/samplchallenges/SAMPL9. [Last accessed on 9 Jan 2025].

23. Nevolianis, T.; Ahmed, R. A.; Hellweg, A.; Diedenhofen, M.; Leonhard, K. Blind prediction of toluene/water partition coefficients using COSMO-RS: results from the SAMPL9 challenge. Phys. Chem. Chem. Phys. 2023, 25, 31683-91.

24. Lundberg, S.; Lee, S. I. A unified approach to interpreting model predictions. arXiv 2017, arXiv:1705.07874. Available online: https://doi.org/10.48550/arXiv.1705.07874. (accessed 9 Jan 2025).

Journal of Materials Informatics
ISSN 2770-372X (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/