REFERENCES

1. Plis, E. A.; Engelhart, D. P.; Cooper, R.; Johnston, W. R.; Ferguson, D.; Hoffmann, R. Review of radiation-induced effects in polyimide. Appl. Sci. 2019, 9, 1999.

2. Wu, X.; Shu, C.; Zhong, M.; et al. Irradiation tolerance of an optically transparent polyimide film under 1 MeV electron beam. Appl. Surf. Sci. 2022, 583, 152558.

3. Lei, Y.; Zhang, L.; Zhou, L.; et al. Proton irradiation-induced changes in the tribological performance of polyimide composites. Tribol. Int. 2022, 167, 107427.

4. Cherkashina, N.; Pavlenko, V.; Noskov, A. Synthesis and property evaluations of highly filled polyimide composites under thermal cycling conditions from -190 °C to +200 °C. Cryogenics 2019, 104, 102995.

5. De, O. P. R.; Sukumaran, A. K.; Benedetti, L.; et al. Novel polyimide-hexagonal boron nitride nanocomposites for synergistic improvement in tribological and radiation shielding properties. Tribol. Int. 2023, 189, 108936.

6. Kim, S. D.; Lee, B.; Byun, T.; et al. Poly(amide-imide) materials for transparent and flexible displays. Sci. Adv. 2018, 4, eaau1956.

7. Xu, Z.; Li, M.; Xu, M.; et al. Light extraction of flexible OLEDs based on transparent polyimide substrates with 3-D photonic structure. Org. Electron. 2017, 44, 225-31.

8. Park, C. I.; Seong, M.; Kim, M. A.; et al. World’s first large size 77-inch transparent flexible OLED display. J. Soc. Info. Display. 2018, 26, 287-95.

9. Ke, T.; Kang, T.; Lee, C.; et al. Flexible OLED display with 620°C LTPS TFT and touch sensor manufactured by weak bonding method. J. Soc. Info. Display. 2020, 28, 392-400.

10. Zhang, M.; Wang, L.; Xu, H.; Song, Y.; He, X. Polyimides as promising materials for lithium-ion batteries: a review. Nanomicro. Lett. 2023, 15, 135.

11. Li, M.; Sheng, L.; Xu, R.; et al. Enhanced the mechanical strength of polyimide (PI) nanofiber separator via PAALi binder for lithium ion battery. Compos. Commun. 2021, 24, 100607.

12. Huang, X.; Liao, S.; Liu, Y.; Rao, Q.; Peng, X.; Min, Y. Design, fabrication and application of PEO/CMC-Li @PI hybrid polymer electrolyte membrane in all-solid-state lithium battery. Electrochim. Acta. 2021, 389, 138747.

13. Parsaei, S.; Zebarjad, S. M.; Moghim, M. H. Fabrication and post-processing of PI/PVDF-HFP/PI electrospun sandwich separators for lithium-ion batteries. Polym. Eng. Sci. 2022, 62, 3641-51.

14. Song, S.; Xu, X.; Lan, H.; et al. Design of co-cured multi-component thermosets with enhanced heat resistance, toughness, and processability via a machine learning approach. Macromol. Rapid. Commun. 2024, 45, e2400337.

15. Ha, H. W.; Choudhury, A.; Kamal, T.; Kim, D. H.; Park, S. Y. Effect of chemical modification of graphene on mechanical, electrical, and thermal properties of polyimide/graphene nanocomposites. ACS. Appl. Mater. Interfaces. 2012, 4, 4623-30.

16. Han, E.; Wang, Y.; Chen, X.; et al. Consecutive large-scale fabrication of surface-silvered polyimide fibers via an integrated direct ion-exchange self-metallization strategy. ACS. Appl. Mater. Interfaces. 2013, 5, 4293-301.

17. Li, J.; Zhang, H.; Chen, J. Z. Y. Structural prediction and inverse design by a strongly correlated neural network. Phys. Rev. Lett. 2019, 123, 108002.

18. Zhao, H.; Duan, P.; Li, Z.; et al. Unveiling the multiscale dynamics of polymer vitrimers via molecular dynamics simulations. Macromolecules 2023, 56, 9336-49.

19. Gao, L.; Lin, J.; Wang, L.; Du, L. Machine learning-assisted design of advanced polymeric materials. Acc. Mater. Res. 2024, 5, 571-84.

20. Zhang, K.; Gong, X.; Jiang, Y. Machine learning in soft matter: from simulations to experiments. Adv. Funct. Mater. 2024, 34, 2315177.

21. Liu, L.; Li, Y.; Zheng, J.; Li, H. Expert-augmented machine learning to accelerate the discovery of copolymers for anion exchange membrane. J. Membr. Sci. 2024, 693, 122327.

22. Dong, Q.; Xu, Z.; Song, Q.; Qiang, Y.; Cao, Y.; Li, W. Automated search strategy for novel ordered structures of block copolymers. ACS. Macro. Lett. 2024, 13, 987-93.

23. Qiu, H.; Sun, Z. On-demand reverse design of polymers with PolyTAO. npj. Comput. Mater. 2024, 10, 1466.

24. Lu, R.; Han, Y.; Hu, J.; et al. Deep learning model for precise prediction and design of low-melting point phthalonitrile monomers. Chem. Eng. J. 2024, 497, 154815.

25. Qiu, H.; Zhao, W.; Pei, H.; Li, J.; Sun, Z. Highly accurate prediction of viscosity of epoxy resin and diluent at various temperatures utilizing machine learning. Polymer 2022, 256, 125216.

26. Jumper, J.; Evans, R.; Pritzel, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583-9.

27. Xu, Y.; Liu, X.; Cao, X.; et al. Artificial intelligence: a powerful paradigm for scientific research. Innovation 2021, 2, 100179.

28. Qiu, H.; Liu, L.; Qiu, X.; Dai, X.; Ji, X.; Sun, Z. Y. PolyNC: a natural and chemical language model for the prediction of unified polymer properties. Chem. Sci. 2024, 15, 534-44.

29. Gao, H.; Struble, T. J.; Coley, C. W.; Wang, Y.; Green, W. H.; Jensen, K. F. Using machine learning to predict suitable conditions for organic reactions. ACS. Cent. Sci. 2018, 4, 1465-76.

30. Mannodi-kanakkithodi, A.; Chandrasekaran, A.; Kim, C.; et al. Scoping the polymer genome: a roadmap for rational polymer dielectrics design and beyond. Mater. Today. 2018, 21, 785-96.

31. Zhang, S.; He, X.; Xia, X.; et al. Machine-learning-enabled framework in engineering plastics discovery: a case study of designing polyimides with desired glass-transition temperature. ACS. Appl. Mater. Interfaces. 2023, 15, 37893-902.

32. Uddin, M. J.; Fan, J. Interpretable machine learning framework to predict the glass transition temperature of polymers. Polymers 2024, 16, 1049.

33. Qiu, H.; Qiu, X.; Dai, X.; Sun, Z. Design of polyimides with targeted glass transition temperature using a graph neural network. J. Mater. Chem. C. 2023, 11, 2930-40.

34. Dong, X.; Wan, B.; Zheng, M. S.; et al. Dual-effect coupling for superior dielectric and thermal conductivity of polyimide composite films featuring “crystal-like phase” structure. Adv. Mater. 2024, 36, e2307804.

35. Luo, G.; Huan, F.; Sun, Y.; Shi, F.; Deng, S.; Wang, J. Machine learning-based high-throughput screening for high-stability polyimides. Ind. Eng. Chem. Res. 2024, 63, 21110-22.

36. Zhang, S.; He, X.; Xiao, P.; et al. Interpretable machine learning for investigating the molecular mechanisms governing the transparency of colorless transparent polyimide for OLED cover windows. Adv. Funct. Mater. 2024, 34, 2409143.

37. Yue, T.; He, J.; Tao, L.; Li, Y. High-throughput screening and prediction of high modulus of resilience polymers using explainable machine learning. J. Chem. Theory. Comput. 2023, 19, 4641-53.

38. Tao, L.; He, J.; Munyaneza, N. E.; et al. Discovery of multi-functional polyimides through high-throughput screening using explainable machine learning. Chem. Eng. J. 2023, 465, 142949.

39. Lei, H.; Qi, S.; Wu, D. Hierarchical multiscale analysis of polyimide films by molecular dynamics simulation: investigation of thermo-mechanical properties. Polymer 2019, 179, 121645.

40. Chen, G.; Shen, Z.; Iyer, A.; et al. Machine-learning-assisted de novo design of organic molecules and polymers: opportunities and challenges. Polymers 2020, 12, 163.

41. Campos, D.; Ji, H. IMG2SMI: translating molecular structure images to simplified molecular-input line-entry system. arXiv 2024;arXiv:2109.04202. Available from: https://doi.org/10.48550/arXiv.2109.04202. [accessed 21 Dec 2024]

42. Tao, L.; Varshney, V.; Li, Y. Benchmarking machine learning models for polymer informatics: an example of glass transition temperature. J. Chem. Inf. Model. 2021, 61, 5395-413.

43. Chen, G.; Tao, L.; Li, Y. Predicting polymers’ glass transition temperature by a chemical language processing model. Polymers 2021, 13, 1898.

44. Wu, S.; Kondo, Y.; Kakimoto, M.; et al. Machine-learning-assisted discovery of polymers with high thermal conductivity using a molecular design algorithm. npj. Comput. Mater. 2019, 5, 203.

45. Zhang, Y.; Xu, X. Machine learning glass transition temperature of polyacrylamides using quantum chemical descriptors. Polym. Chem. 2021, 12, 843-51.

46. Fan, Y.; Chen, M.; Zhu, Q. lncLocPred: predicting LncRNA subcellular localization using multiple sequence feature information. IEEE. Access. 2020, 8, 124702-11.

47. Griffiths, W. E.; Hill, R. C. On the power of the F-test for hypotheses in a linear model. Am. Stat. 2022, 76, 78-84.

48. Cakir, F.; He, K.; Bargal, S. A.; Sclaroff, S. Hashing with mutual information. IEEE. Trans. Pattern. Anal. Mach. Intell. 2019, 41, 2424-37.

49. Xiao, X.; Zou, Y.; Huang, J.; et al. An interpretable model for landslide susceptibility assessment based on Optuna hyperparameter optimization and Random Forest. Geomatics. Nat. Hazards. Risk. 2024, 15, 2347421.

50. Wan, Z.; Zhao, W.; Qiu, H.; et al. Data-driven exploration of polymer processing effects on the mechanical properties in carbon black-reinforced rubber composites. Chin. J. Polym. Sci. 2024, 42, 2038-47.

51. Wan, Z.; Chen, S.; Feng, X.; Sun, Z. From processing to properties: enhancing machine learning models with microstructural information in polymer nanocomposites. Compos. Commun. 2024, 51, 102072.

Journal of Materials Informatics
ISSN 2770-372X (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/