1. Geng, J.; Ji, S.; Jin, M.; et al. Ambient electrosynthesis of urea with nitrate and carbon dioxide over iron-based dual-sites. Angew. Chem. Int. Ed. Engl. 2023, 62, e202210958.
2. Celleno, L. Topical urea in skincare: a review. Dermatol. Ther. 2018, 31, e12690.
3. Sun, C. N.; Wang, Z. L.; Lang, X. Y.; Wen, Z.; Jiang, Q. Synergistic effect of active sites of double-atom catalysts for nitrogen reduction reaction. ChemSusChem 2021, 14, 4593-600.
4. Dai, T.; Lang, X.; Wang, Z.; Wen, Z.; Jiang, Q. Rational design of an Fe cluster catalyst for robust nitrogen activation. J. Mater. Chem. A. 2021, 9, 21219-27.
5. Wei, X.; Liu, Y.; Zhu, X.; et al. Dynamic reconstitution between copper single atoms and clusters for electrocatalytic urea synthesis. Adv. Mater. 2023, 35, e2300020.
6. Lv, C.; Lee, C.; Zhong, L.; et al. A defect engineered electrocatalyst that promotes high-efficiency urea synthesis under ambient conditions. ACS. Nano. 2022, 16, 8213-22.
7. Jiang, M.; Zhu, M.; Wang, M.; et al. Review on electrocatalytic coreduction of carbon dioxide and nitrogenous species for urea synthesis. ACS. Nano. 2023, 17, 3209-24.
8. Erisman, J. W.; Sutton, M. A.; Galloway, J.; Klimont, Z.; Winiwarter, W. How a century of ammonia synthesis changed the world. Nature. Geosci. 2008, 1, 636-9.
9. Huang, Y.; Wang, Y.; Liu, Y.; et al. Unveiling the quantification minefield in electrocatalytic urea synthesis. Chem. Eng. J. 2023, 453, 139836.
10. Chen, C.; Zhu, X.; Wen, X.; et al. Coupling N2 and CO2 in H2O to synthesize urea under ambient conditions. Nat. Chem. 2020, 12, 717-24.
11. Sun, C. N.; Qu, Y. B.; Wang, Z. L.; Jiang, Q. Hydrogen spillover in alkaline solutions for effective nitrogen fixation. Chem. Eng. J. 2023, 471, 144589.
12. Yang, L.; Feng, S.; Zhu, W. Novel honeycomb-like metal organic frameworks as multifunction electrodes for nitrate degradation: A computational study. J. Hazard. Mater. 2023, 445, 130534.
13. Lu, Z.; Li, S.; Lv, P.; He, C.; Ma, D.; Yang, Z. First principles study on the interfacial properties of NM/graphdiyne (NM = Pd, Pt, Rh and Ir): the implications for NM growing. Appl. Surf. Sci. 2016, 360, 1-7.
14. Song, B.; Chen, M.; Zeng, G.; et al. Using graphdiyne (GDY) as a catalyst support for enhanced performance in organic pollutant degradation and hydrogen production: a review. J. Hazard. Mater. 2020, 398, 122957.
15. Fang, Y.; Liu, Y.; Qi, L.; Xue, Y.; Li, Y. 2D graphdiyne: an emerging carbon material. Chem. Soc. Rev. 2022, 51, 2681-709.
16. Li, L.; Qiao, W.; Bai, H.; Huang, Y. Structural and electronic properties of α-, β-, γ-, and 6,6,18-graphdiyne sheets and nanotubes. RSC. Adv. 2020, 10, 16709-17.
17. Li, Y.; Xu, L.; Liu, H.; Li, Y. Graphdiyne and graphyne: from theoretical predictions to practical construction. Chem. Soc. Rev. 2014, 43, 2572-86.
18. Delley, B. From molecules to solids with the DMol3 approach. J. Chem. Phys. 2000, 113, 7756-64.
19. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-8.
20. Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787-99.
21. Delley, B. Hardness conserving semilocal pseudopotentials. Phys. Rev. B. 2002, 66, 155125.
22. Dronskowski, R.; Bloechl, P. E. Crystal orbital Hamilton populations (COHP): energy-resolved visualization of chemical bonding in solids based on density-functional calculations. J. Phys. Chem. 1993, 97, 8617-24.
23. Deringer, V. L.; Tchougréeff, A. L.; Dronskowski, R. Crystal orbital Hamilton population (COHP) analysis as projected from plane-wave basis sets. J. Phys. Chem. A. 2011, 115, 5461-6.
24. Halgren, T. A.; Lipscomb, W. N. The synchronous-transit method for determining reaction pathways and locating molecular transition states. Chem. Phys. Lett. 1977, 49, 225-32.
25. Hirshfeld, F. L. Bonded-atom fragments for describing molecular charge densities. Theoret. Chim. Acta. 1977, 44, 129-38.
26. Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B. 2004, 108, 17886-92.
27. Skúlason, E.; Bligaard, T.; Gudmundsdóttir, S.; et al. A theoretical evaluation of possible transition metal electro-catalysts for N2 reduction. Phys. Chem. Chem. Phys. 2012, 14, 1235-45.
28. Haynes, W. M. CRC handbook of chemistry and physics. 97th edition. CRC Press, 2016.
29. Zhu, P.; Xiong, X.; Wang, X.; et al. Regulating the FeN4 moiety by constructing Fe-Mo dual-metal atom sites for efficient electrochemical oxygen reduction. Nano. Lett. 2022, 22, 9507-15.
30. Gao, S.; Liu, X.; Wang, Z.; et al. Spin regulation for efficient electrocatalytic N2 reduction over diatomic Fe-Mo catalyst. J. Colloid. Interface. Sci. 2023, 630, 215-23.
31. Zhang, Y.; Ma, N.; Wang, Y.; Liang, B.; Fan, J. Theoretical design toward highly efficient single-atom catalysts for nitrogen reduction by regulating the “acceptance-donation” mechanism. Appl. Surf. Sci. 2023, 623, 156827.
32. Hu, J.; Zhang, C.; Sun, M.; et al. Ultrastable bimetallic Fe2Mo for efficient oxygen reduction reaction in pH-universal applications. Nano. Res. 2022, 15, 4950-7.
33. Zhou, X. Y.; Rong, C. Y.; Lu, T.; Liu, S. B. Hirshfeld charge as a quantitative measure of electrophilicity and nucleophilicity: nitrogen-containing systems. Acta. Phys. Chim. Sin. 2014, 30, 2055-62.
34. Chen, Z. W.; Chen, L. X.; Jiang, M.; et al. A triple atom catalyst with ultrahigh loading potential for nitrogen electrochemical reduction. J. Mater. Chem. A. 2020, 8, 15086-93.
35. Liang, S.; Deng, H.; Zhou, Z.; Wong, W. Fabrication of graphdiyne and its analogues for photocatalytic application. EcoMat 2023, 5, e12297.
36. Wang, X.; Qiu, S.; Feng, J.; et al. Confined Fe-Cu clusters as sub-nanometer reactors for efficiently regulating the electrochemical nitrogen reduction reaction. Adv. Mater. 2020, 32, e2004382.
37. Zhou, H. Y.; Qu, Y. B.; Li, J. C.; Wang, Z. L.; Yang, C. C.; Jiang, Q. Effectively boosting selective ammonia synthesis on electron-deficient surface of MoB2. Appl. Catal. B. Environ. 2022, 305, 121023.
38. Zhang, J.; Yang, H. B.; Zhou, D.; Liu, B. Adsorption energy in oxygen electrocatalysis. Chem. Rev. 2022, 122, 17028-72.
39. Govindarajan, N.; García-Lastra, J. M.; Meijer, E. J.; Calle-Vallejo, F. Does the breaking of adsorption-energy scaling relations guarantee enhanced electrocatalysis? Curr. Opin. Electrochem. 2018, 8, 110-7.
40. Jiao, D.; Wang, Z.; Liu, Y.; et al. Mo2P Monolayer as a superior electrocatalyst for urea synthesis from nitrogen and carbon dioxide fixation: a computational study. Energy. Environ. Mater. 2024, 7, e12496.
41. Jiao, D.; Dong, Y.; Cui, X.; et al. Boosting the efficiency of urea synthesis via cooperative electroreduction of N2 and CO2 on MoP. J. Mater. Chem. A. 2022, 11, 232-40.
42. Roy, P.; Pramanik, A.; Sarkar, P. Dual-silicon-doped graphitic carbon nitride sheet: an efficient metal-free electrocatalyst for urea synthesis. J. Phys. Chem. Lett. 2021, 12, 10837-44.
43. Zhu, X.; Zhou, X.; Jing, Y.; Li, Y. Electrochemical synthesis of urea on MBenes. Nat. Commun. 2021, 12, 4080.
44. Cao, Y.; Meng, Y.; An, R.; et al. Revealing electrocatalytic C-N coupling for urea synthesis with metal-free electrocatalyst. J. Colloid. Interface. Sci. 2023, 641, 990-9.
45. Kong, L.; Jiao, D.; Wang, Z.; et al. Single metal atom anchored on porous boron nitride nanosheet for efficient collaborative urea electrosynthesis: a computational study. Chem. Eng. J. 2023, 451, 138885.
46. Yang, Y.; Peng, J.; Shi, Z.; Zhang, P.; Arramel, A.; Li, N. Unveiling the key intermediates in electrocatalytic synthesis of urea with CO2 and N2 coupling reactions on double transition-metal MXenes. J. Mater. Chem. A. 2023, 11, 6428-39.
47. Liang, F.; Zhang, K.; Zhang, L.; Zhang, Y.; Lei, Y.; Sun, X. Recent development of electrocatalytic CO2 reduction application to energy conversion. Small 2021, 17, e2100323.
Comments
Comments must be written in English. Spam, offensive content, impersonation, and private information will not be permitted. If any comment is reported and identified as inappropriate content by OAE staff, the comment will be removed without notice. If you have any queries or need any help, please contact us at support@oaepublish.com.