1. Lee WH, Lee CW, Cha GD, et al. Floatable photocatalytic hydrogel nanocomposites for large-scale solar hydrogen production. Nat Nanotechnol 2023;18:754-62.
2. Zhang Y, Huang X, Yeom J. A floatable piezo-photocatalytic platform based on semi-embedded ZnO nanowire array for high-performance water decontamination. Nanomicro Lett 2019;11:11.
3. Sayed M, Ren B, Ali AM, et al. Solar light induced photocatalytic activation of peroxymonosulfate by ultra-thin Ti3+ self-doped Fe2O3/TiO2 nanoflakes for the degradation of naphthalene. Appl Catal B Environ 2022;315:121532.
4. Zhao D, Wu X, Gu X, Liu J. Investigation into the degradation of air and runoff pollutants using nano g-C3N4 photocatalytic road surfaces. Constr Build Mater 2024;411:134553.
5. Liu J, Zhang Q, Tian X, et al. Highly efficient photocatalytic degradation of oil pollutants by oxygen deficient SnO2 quantum dots for water remediation. Chem Eng J 2021;404:127146.
6. Barakat M. New trends in removing heavy metals from industrial wastewater. Arab J Chem 2011;4:361-77.
7. Zhang X, Wu F, Li G, et al. Modulating electronic structure and sulfur p-band center by anchoring amorphous Ni@NiSx on crystalline CdS for expediting photocatalytic H2 evolution. Appl Catal B Environ 2024;342:123398.
8. Zhang L, Jiang Z, Guo J, et al. Deep insight into regulation mechanism of band distribution in phase junction CdS for enhanced photocatalytic H2 production. J Colloid Interface Sci 2024;669:146-56.
9. Gong E, Ali S, Hiragond CB, et al. Solar fuels: research and development strategies to accelerate photocatalytic CO2 conversion into hydrocarbon fuels. Energy Environ Sci 2022;15:880-937.
10. Liang C, Niu H, Guo H, et al. Efficient photocatalytic nitrogen fixation to ammonia over bismuth monoxide quantum dots-modified defective ultrathin graphitic carbon nitride. Chem Eng J 2021;406:126868.
11. Shi D, Zhang L, Cao Y. Band structure engineering of Pd, Rh, Cu-modified SrMoO4 for enhanced activity and selectivity in photocatalytic CO2 reduction to CH4. Appl Surf Sci 2024;648:158979.
12. Mai H, Le TC, Chen D, Winkler DA, Caruso RA. Machine learning for electrocatalyst and photocatalyst design and discovery. Chem Rev 2022;122:13478-515.
13. Dong W, Zhou S, Ma Y, et al. N-doped C-coated MoO2/ZnIn2S4 heterojunction for efficient photocatalytic hydrogen production. Rare Met 2023;42:1195-204.
14. Li R, Bian Y, Yang C, et al. Electronic structure regulation and built-in electric field synergistically strengthen photocatalytic nitrogen fixation performance on Ti-BiOBr/TiO2 heterostructure. Rare Met 2024;43:1125-38.
15. Ma Y, Fang H, Chen R, et al. 2D-MOF/2D-MOF heterojunctions with strong hetero-interface interaction for enhanced photocatalytic hydrogen evolution. Rare Met 2023;42:3993-4004.
16. Xiong J, Li X, Huang J, et al. CN/rGO@BPQDs high-low junctions with stretching spatial charge separation ability for photocatalytic degradation and H2O2 production. Appl Catal B Environ 2020;266:118602.
17. Wu X, Yao X, Xie B, et al. Unraveling the atmospheric oxidation mechanism and kinetics of naphthalene: insights from theoretical exploration. Chemosphere 2024;352:141356.
18. Arce-Saldaña L, Soto G, Herrera JR, Simakov A, Flores UC. Compact device for in situ ultraviolet-visible spectrophotometric measurement of photocatalytic kinetics. Rev Sci Instrum 2023;94:085106.
19. Schnabel T, Dutschke M, Schuetz F, Hauser F, Springer C. Photocatalytic air purification of polycyclic aromatic hydrocarbons: application of a flow-through reactor, kinetic studies and degradation pathways. J Photochem Photobiol A Chem 2022;430:113993.
20. Guo Y, Dai Y, Wang Y, et al. Boosted visible-light-driven degradation over stable ternary heterojunction as a plasmonic photocatalyst: mechanism exploration, pathway and toxicity evaluation. J Colloid Interface Sci 2023;641:758-81.
21. Dhawan A, Sudhaik A, Raizada P, et al. BiFeO3-based Z scheme photocatalytic systems: advances, mechanism, and applications. J Ind Eng Chem 2023;117:1-20.
22. Hu Y, Chen J, Wei Z, He Q, Zhao Y. Recent advances and applications of machine learning in electrocatalysis. J Mater Inf 2023;3:18.
23. Humayun M, Ullah H, Cao J, et al. Experimental and DFT studies of Au deposition over WO3/g-C3N4 Z-scheme heterojunction. Nanomicro Lett 2019;12:7.
24. Liu J, Gao F, Wu L, et al. Size effect on oxygen vacancy formation and gaseous adsorption in ZnO nanocrystallites for gas sensors: a first principle calculation study. Appl Phys A 2020;126:3643.
25. Yang Y, Zeng G, Huang D, et al. Molecular engineering of polymeric carbon nitride for highly efficient photocatalytic oxytetracycline degradation and H2O2 production. Appl Catal B Environ 2020;272:118970.
26. Wang V, Tang G, Liu YC, et al. High-throughput computational screening of two-dimensional semiconductors. J Phys Chem Lett 2022;13:11581-94.
27. Fu C, Zhang K, Guan H, et al. Progressive prediction algorithm by multi-interval data sampling in multi-task learning for real-time gas identification. Sens Actuators B Chem 2024;418:136271.
28. Liu Y, Yang B, He H, Yang S, Duan X, Wang S. Bismuth-based complex oxides for photocatalytic applications in environmental remediation and water splitting: a review. Sci Total Environ 2022;804:150215.
29. Lim L, Lynch R. A proposed photocatalytic reactor design for in situ groundwater applications. Appl Catal A Gen 2010;378:202-10.
30. Lam S, Sin J, Zeng H, et al. Green synthesis of Fe-ZnO nanoparticles with improved sunlight photocatalytic performance for polyethylene film deterioration and bacterial inactivation. Mater Sci Semicond Process 2021;123:105574.
31. zhang T, Maihemllti M, Okitsu K, Talifur D, Tursun Y, Abulizi A. In situ self-assembled S-scheme BiOBr/pCN hybrid with enhanced photocatalytic activity for organic pollutant degradation and CO2 reduction. Appl Surf Sci 2021;556:149828.
32. Li X, Xiong J, Gao X, et al. Recent advances in 3D g-C3N4 composite photocatalysts for photocatalytic water splitting, degradation of pollutants and CO2 reduction. J Alloys Compd 2019;802:196-209.
33. Guo Q, Zhou C, Ma Z, Yang X. Fundamentals of TiO2 photocatalysis: concepts, mechanisms, and challenges. Adv Mater 2019;31:e1901997.
34. Xu Q, Jiang J, Wang X, Duan L, Guo H. Understanding oxygen vacant hollow structure CeO2@In2O3 heterojunction to promote CO2 reduction. Rare Met 2023;42:1888-98.
35. Li W, Li J, Liu Z, et al. Fast charge transfer kinetics in Sv-ZnIn2S4/Sb2S3 S-scheme heterojunction photocatalyst for enhanced photocatalytic hydrogen evolution. Rare Met 2024;43:533-42.
36. Ali S, Ismail PM, Khan M, et al. Charge transfer in TiO2-based photocatalysis: fundamental mechanisms to material strategies. Nanoscale 2024;16:4352-77.
37. Yu W, Hu C, Bai L, Tian N, Zhang Y, Huang H. Photocatalytic hydrogen peroxide evolution: what is the most effective strategy? Nano Energy 2022;104:107906.
38. Hashimoto K, Irie H, Fujishima A. TiO2 photocatalysis: a historical overview and future prospects. Jpn J Appl Phys 2005;44:8269.
39. Nasr M, Eid C, Habchi R, Miele P, Bechelany M. Recent progress on titanium dioxide nanomaterials for photocatalytic applications. ChemSusChem 2018;11:3023-47.
40. Wu D, Liu X, Liu J, Akhtar A, Fu C. Hydrothermal synthesis of Z-scheme photocatalyst Zn2SnO4-g-C3N4 for efficient tetracycline antibiotic removal. Diam Relat Mater 2024;141:110572.
41. Li J, Li Y. Recent advances in the interface structure prediction for heteromaterial systems. J Mater Inf 2023;3:22.
42. Cai M, Tong X, Zhao H, et al. Regulating intragap states in colloidal quantum dots for universal photocatalytic hydrogen evolution. Appl Catal B Environ 2024;343:123572.
43. Mao L, Cai X, Zhu M. Hierarchically 1D CdS decorated on 2D perovskite-type La2Ti2O7 nanosheet hybrids with enhanced photocatalytic performance. Rare Met 2021;40:1067-76.
44. Yang J, Liang Y, Li K, Yang G, Yin S. One-step low-temperature synthesis of 0D CeO2 quantum dots/2D BiOX (X = Cl, Br) nanoplates heterojunctions for highly boosting photo-oxidation and reduction ability. Appl Catal B Environ 2019;250:17-30.
45. Liu J, Qu X, Zhang C, et al. High-yield aqueous synthesis of partial-oxidized black phosphorus as layered nanodot photocatalysts for efficient visible-light driven degradation of emerging organic contaminants. J Clean Prod 2022;377:134228.
46. Guo S, Ji Y, Li Y, et al. Amorphous quantum dots co-catalyst: defect level induced solar-to-hydrogen production. Appl Catal B Environ 2023;330:122583.
47. Ye S, Zhou X, Xu Y, et al. Photocatalytic performance of multi-walled carbon nanotube/BiVO4synthesized by electro-spinning process and its degradation mechanisms on oxytetracycline. Chem Eng J 2019;373:880-90.
48. Karpuraranjith M, Chen Y, Rajaboopathi S, et al. Three-dimensional porous MoS2 nanobox embedded g-C3N4@TiO2 architecture for highly efficient photocatalytic degradation of organic pollutant. J Colloid Interface Sci 2022;605:613-23.
49. Hao X, Hu Z, Xiang D, Jin Z. Ultra-thin carbon coated amorphous N-doped CoP enhancing electron transfer for wide spectrum photocatalytic hydrogen evolution. Int J Hydrog Energy 2023;48:600-15.
50. Yang C, Li X, Li M, Liang G, Jin Z. Anchoring oxidation co-catalyst over CuMn2O4/graphdiyne S-scheme heterojunction to promote eosin-sensitized photocatalytic hydrogen evolution. Chin J Catal 2024;56:88-103.
51. Lee CW, Lee BH, Park S, et al. Photochemical tuning of dynamic defects for high-performance atomically dispersed catalysts. Nat Mater 2024;23:552-9.
52. Chen R, Chen S, Wang L, Wang D. Nanoscale metal particle modified single-atom catalyst: synthesis, characterization, and application. Adv Mater 2024;36:e2304713.
53. Li S, You C, Xue Q, et al. Carbon quantum dots and interfacial chemical bond synergistically modulated S-scheme Mn0.5Cd0.5S/BiOBr photocatalyst for efficient water purification. J Mater Sci Technol 2025;214:255-65.
54. Yang M, Zhu X, Zhu Z, et al. Atomic activation triggering selective photoreduction of CO2 to CH4 over NiAl-LDH/CeO2 heterojunction. Chem Eng J 2023;472:145071.
55. Wu Y, Zhu P, Li Y, Zhang L, Jin Z. In Situ derivatization of NiAl-LDH/NiS a p-n heterojunction for efficient photocatalytic hydrogen evolution. ACS Appl Energy Mater 2022;5:8157-68.
56. Yang M, Wang P, Li Y, et al. Graphene aerogel-based NiAl-LDH/g-C3N4 with ultratight sheet-sheet heterojunction for excellent visible-light photocatalytic activity of CO2 reduction. Appl Catal B Environ 2022;306:121065.
57. Wang C, You C, Rong K, Shen C, Yang F, Li S. An S-scheme MIL-101(Fe)-on-BiOCl heterostructure with oxygen vacancies for boosting photocatalytic removal of Cr(VI). Acta Phys Chim Sin 2024;40:2307045.
58. Liu Z, Li Y, Jin Z. Mechanochemical preparation of graphdiyne (CnH2n-2) based Ni-doped MoS2 S-scheme heterojunctions with in situ XPS characterization for efficient hydrogen production†. J Mater Chem C 2023;11:9327-40.
59. Dong K, Shen C, Yan R, Liu Y, Zhuang C, Li S. Integration of plasmonic effect and S-scheme heterojunction into Ag/Ag3PO4/C3N5 photocatalyst for boosted photocatalytic levofloxacin degradation. Acta Phys Chim Sin 2024;40:2310013.
60. Laxmi V, Agarwal S, Khan S. Advanced nanoribbons in water purification: a comprehensive review. J Environ Manage 2024;370:122645.
61. Jo W, Kumar S, Isaacs MA, Lee AF, Karthikeyan S. Cobalt promoted TiO2/GO for the photocatalytic degradation of oxytetracycline and Congo Red. Appl Catal B Environ 2017;201:159-68.
62. Wang Y, Wu X, Liu J, et al. Mo-modified band structure and enhanced photocatalytic properties of tin oxide quantum dots for visible-light driven degradation of antibiotic contaminants. J Environ Chem Eng 2022;10:107091.
63. Mouloua D, Lejeune M, Rajput NS, et al. One-step chemically vapor deposited hybrid 1T-MoS2/2H-MoS2 heterostructures towards methylene blue photodegradation. Ultrason Sonochem 2023;95:106381.
64. Yang K, Zhong S, Zhou X, et al. Controllable Al2O3 coating makes TiO2 photocatalysts active under visible light by pulsed chemical vapor deposition. Chem Eng Sci 2023;277:118792.
65. Ge L, Ke Y, Li X. Machine learning integrated photocatalysis: progress and challenges. Chem Commun 2023;59:5795-806.
66. Merchant A, Batzner S, Schoenholz SS, Aykol M, Cheon G, Cubuk ED. Scaling deep learning for materials discovery. Nature 2023;624:80-5.
67. Steinmann SN, Wang Q, Seh ZW. How machine learning can accelerate electrocatalysis discovery and optimization. Mater Horiz 2023;10:393-406.
68. Javed MF, Shahab MZ, Asif U, et al. Evaluation of machine learning models for predicting TiO2 photocatalytic degradation of air contaminants. Sci Rep 2024;14:13688.
69. Subramanian Y, Gajendiran J, Veena R, et al. Structural, photoabsorption and photocatalytic characteristics of BiFeO3-WO3 nanocomposites: an attempt to validate the experimental data through SVM-based artificial intelligence (AI). J Electron Mater 2023;52:2421-31.
70. Ahmed F, Kang IS, Kim KH, et al. Drug repurposing for viral cancers: a paradigm of machine learning, deep learning, and virtual screening-based approaches. J Med Virol 2023;95:e28693.
71. Yadav A, Acosta CM, Dalpian GM, Malyi OI. First-principles investigations of 2D materials: challenges and best practices. Matter 2023;6:2711-34.
72. Liu J, Wu L, Gao F, Hong W, Jin G, Zhai Z. Size effects of vacancy formation and oxygen adsorption on gas- sensitive tin oxide semiconductor: a first principle study. CNANO 2021;17:327-37.
73. Gu Y, Gu Y, Tao Q, Wang X, Zhu Q, Ma J. Machine learning for prediction of CO2/N2/H2O selective adsorption and separation in metal-zeolites. J Mater Inf 2023;3:19.
74. Pu Y, Liu Y, Liu D, et al. First-principles screening visible-light active delafossite ABO2 structures for photocatalytic application. Int J Hydrog Energy 2018;43:17271-82.
75. Liu Y, Lu Y, Wang WY, et al. Effects of solutes on thermodynamic properties of (TMZrU)C (TM = Ta, Y) medium-entropy carbides: a first-principles study. J Mater Inf 2023;3:17.
76. Xu L, Zeng J, Li Q, et al. Insight into enhanced visible-light photocatalytic activity of SWCNTs/g-C3N4 nanocomposites from first principles. Appl Surf Sci 2020;530:147181.
77. Liu J, Li W, Li H, et al. A novel detection method for sulfur content in ship fuel based on metal-doped tin oxide quantum dots as fluorescent sensor. Fuel 2024;357:129739.
78. Shen H, Ouyang T, Guo J, Mu M, Yin X. A perspective LDHs/Ti3C2O2 design by DFT calculation for photocatalytic reduction of CO2 to C2 organics. Appl Surf Sci 2023;609:155445.
79. Wang G, Dong X, Cheng M, et al. DFT predirected molecular engineering design of donor-acceptor structured g-C3N4 for efficient photocatalytic tetracycline abatement. Small 2024;20:e2311798.
80. Vu TV, Anh NTT, Hoat D, et al. Electronic, optical and photocatalytic properties of fully hydrogenated GeC monolayer. Physica E 2020;117:113857.
81. Zhao Y, Wang W, Li C, et al. Enhanced photocatalytic activity of nonmetal doped monolayer MoSe2 by hydrogen passivation: first-principles study. Appl Surf Sci 2018;456:133-9.
82. Tang C, Chen C, Zhang H, Zhang J, Li Z. Enhancement of degradation for nitrogen doped zinc oxide to degrade methylene blue. Physica B 2020;583:412029.
83. Su K, Xu X, Lai G, et al. First-principles investigation of the elastic, photocatalytic and ferroelectric properties of LiNbO3-type LiSbO3 under high pressure. Mater Today Commun 2021;27:102406.
84. Dong S, Li Y, Zhang X, et al. Pt single-atom loaded on nonmetallic elements (C, N, P, S) doped ZrO2 in photocatalytic hydrogen evolution: first principles. Mater Des 2023;231:112068.
85. Gong M, Yin H, Lyu P, Sun L. Single transition metal atoms anchored on a two-dimensional polyimide covalent-organic framework as single-atom catalysts for photocatalytic CO2 reduction: a first-principles study. Catal Commun 2023;175:106604.
86. Zhu L, Qin C, Wang Y, Cao J. Single-atom Pt supported on non-metal doped WS2 for photocatalytic CO2 reduction: a first-principles study. Appl Surf Sci 2023;626:157252.
87. Liu J, Zhang H, Li Y, et al. Enhanced Vis-NIR light absorption and thickness effect of Mo-modified SnO2 thin films: a first principle calculation study. Results Phys 2021;23:103997.
88. Zhu Z, Tang X, Wang T, et al. Insight into the effect of co-doped to the photocatalytic performance and electronic structure of g-C3N4 by first principle. Appl Catal B Environ 2019;241:319-28.
89. Ren J, Zhang J, Tian B, et al. First-principles study of the electronic, optical adsorption, and photocatalytic water-splitting properties of a strain-tuned SiC/WS2 heterojunction. Int J Hydrog Energy 2024;87:554-65.
90. Zhang R, Jian W, Yang Z, Bai F. Insights into the photocatalytic mechanism of the C4N/MoS2 heterostructure: a first-principle study. Chin Chem Lett 2020;31:2319-24.
91. Ga S, An N, Lee GY, Joo C, Kim J. Multidisciplinary high-throughput screening of metal-organic framework for ammonia-based green hydrogen production. Renew Sustain Energy Rev 2024;192:114275.
92. Mooraj S, Chen W. A review on high-throughput development of high-entropy alloys by combinatorial methods. J Mater Inf 2023;3:4.
93. Yang H, Che Y, Cooper AI, Chen L, Li X. Machine learning accelerated exploration of ternary organic heterojunction photocatalysts for sacrificial hydrogen evolution. J Am Chem Soc 2023;145:27038-44.
94. Sa B, Hu R, Zheng Z, et al. High-throughput computational screening and machine learning modeling of janus 2D III-VI van der Waals heterostructures for solar energy applications. Chem Mater 2022;34:6687-701.
95. Singh AK, Montoya JH, Gregoire JM, Persson KA. Robust and synthesizable photocatalysts for CO2 reduction: a data-driven materials discovery. Nat Commun 2019;10:443.
96. Wang Y, Brocks G, Er S. Data-driven discovery of intrinsic direct-gap 2D materials as potential photocatalysts for efficient water splitting. ACS Catal 2024;14:1336-50.
97. Côté P, Nikanjam A, Ahmed N, Humeniuk D, Khomh F. Data cleaning and machine learning: a systematic literature review. Autom Softw Eng 2024;31:453.
98. Ge C, Gao Y, Miao X, Yao B, Wang H. A hybrid data cleaning framework using markov logic networks. IEEE Trans Knowl Data Eng 2022;34:2048-62.
99. Bernhardt M, Castro DC, Tanno R, et al. Active label cleaning for improved dataset quality under resource constraints. Nat Commun 2022;13:1161.
100. Lima FT, Souza VM. A large comparison of normalization methods on time series. Big Data Res 2023;34:100407.
101. Chen S, Guo W. Auto-encoders in deep learning-a review with new perspectives. Math 2023;11:1777.
102. Li P, Pei Y, Li J. A comprehensive survey on design and application of autoencoder in deep learning. Appl Soft Comput 2023;138:110176.
103. Xie J, Sage M, Zhao YF. Feature selection and feature learning in machine learning applications for gas turbines: a review. Eng Appl Artif Intell 2023;117:105591.
104. Wang J, Xu P, Ji X, Li M, Lu W. Feature selection in machine learning for perovskite materials design and discovery. Materials 2023;16:3134.
105. Wang C, Wan Y, Yang S, et al. Revealing the untapped potential of photocatalytic overall water splitting in metal organic frameworks. Adv Funct Mater 2024;34:2313596.
106. Wan Y, Ramirez F, Zhang X, Nguyen T, Bazan GC, Lu G. Data driven discovery of conjugated polyelectrolytes for optoelectronic and photocatalytic applications. npj Comput Mater 2021;7:541.
107. Baaloudj O, Nasrallah N, Bouallouche R, Kenfoud H, Khezami L, Assadi AA. High efficient Cefixime removal from water by the sillenite Bi12TiO20: photocatalytic mechanism and degradation pathway. J Clean Prod 2022;330:129934.
108. Parida VK, Srivastava SK, Chowdhury S, Gupta AK. Facile synthesis of 2D/0D Bi2O3/MnO2 Z-scheme heterojunction for enhanced visible light-assisted photocatalytic degradation of acetaminophen. Chem Eng J 2023;472:144969.
109. Li J, Liu X, Wang H, Sun Y, Dong F. Prediction and interpretation of photocatalytic NO removal on g-C3N4-based catalysts using machine learning. Chin Chem Lett 2024;35:108596.
110. Fathinia M, Khataee A, Aber S, Naseri A. Development of kinetic models for photocatalytic ozonation of phenazopyridine on TiO2 nanoparticles thin film in a mixed semi-batch photoreactor. Appl Catal B Environ 2016;184:270-84.
111. Amani-ghadim A, Dorraji MS. Modeling of photocatalyatic process on synthesized ZnO nanoparticles: Kinetic model development and artificial neural networks. Appl Catal B Environ 2015;163:539-46.
112. K C A, Rao CS, Nair V. Combination of ensemble machine learning models in photocatalytic studies using nano TiO2 - Lignin based biochar. Chemosphere 2024;352:141326.
113. Wang Y, Sorkun MC, Brocks G, Er S. ML-aided computational screening of 2D materials for photocatalytic water splitting. J Phys Chem Lett 2024;15:4983-91.
114. Rashtbari S, Dehghan G, Marefat A, Khataee S, Khataee A. Proficient sonophotocatalytic degradation of organic pollutants using Co3O4/TiO2 nanocomposite immobilized on zeolite: optimization, and artificial neural network modeling. Ultrason Sonochem 2024;102:106740.
115. Li Z, Li H, Meng L. Model compression for deep neural networks: a survey. Computers 2023;12:60.
116. Fu C, Li H, Li W, et al. Rapid detection of trace sulfur content in ship fuel oil based on tin oxide quantum dot fluorescent sensors assisted by multi-column convolutional neural network. Microchem J 2024;205:111396.
117. Sethi S, Dhir A, Arora V. Photocatalysis based hydrogen production and antibiotic degradation prediction using neural networks. Reac Kinet Mech Cat 2023;136:3283-97.
118. Kakhki R, Zirjanizadeh S, Mohammadpoor M. A review of clinoptilolite, its photocatalytic, chemical activity, structure and properties: in time of artificial intelligence. J Mater Sci 2023;58:10555-75.
119. Isazawa T, Cole JM. How beneficial is pretraining on a narrow domain-specific corpus for information extraction about photocatalytic water splitting? J Chem Inf Model 2024;64:3205-12.
120. Aid L, Abbou MS, Gafour AR, et al. Data-augmenting self-attention network for predicting photocatalytic degradation efficiency: a study on TiO2/curcumin nanocomposites. Reac Kinet Mech Cat 2024;137:3499-516.
121. Li J, Shi H, Li Z, et al. Interaction of metal ions in high efficiency seawater hydrogen peroxide production by a carbon-based photocatalyst. Appl Catal B Environ 2024;343:123541.
122. Hayashi Y, Nagai Y, Pan Z, Katayama K. Convolutional neural network prediction of the photocurrent-voltage curve directly from scanning electron microscopy images†. J Mater Chem A 2023;11:22522-32.
123. Schmidt-Hieber J. The Kolmogorov-Arnold representation theorem revisited. Neural Netw 2021;137:119-26.
124. Wang C, Tan X, Zhu B, et al. Deep learning-assisted non-invasive pediatric tic disorder diagnosis using EEG features extracted by residual neural networks. J Radiat Res Appl Sci 2024;17:101151.
125. He H, Wang Y, Qi Y, Xu Z, Li Y, Wang Y. From prediction to design: recent advances in machine learning for the study of 2D materials. Nano Energy 2023;118:108965.
126. Tao Q, Lu T, Sheng Y, Li L, Lu W, Li M. Machine learning aided design of perovskite oxide materials for photocatalytic water splitting. J Energy Chem 2021;60:351-9.
127. Huang M, Wang S, Zhu H. A comprehensive machine learning strategy for designing high-performance photoanode catalysts. J Mater Chem A 2023;11:21619-27.
128. Lin Z, Li Y, Haque SA, Ganose AM, Kafizas A. Insights from experiment and machine learning for enhanced TiO2 coated glazing for photocatalytic NOx remediation†. J Mater Chem A 2024;12:13281-98.
129. Tamtaji M, Guo X, Tyagi A, et al. Machine learning-aided design of gold core-shell nanocatalysts toward enhanced and selective photooxygenation. ACS Appl Mater Interfaces 2022;14:46471-80.
130. Miodyńska M, Mikolajczyk A, Mazierski P, et al. Lead-free bismuth-based perovskites coupled with g-C3N4: a machine learning based novel approach for visible light induced degradation of pollutants. Appl Surf Sci 2022;588:152921.
131. Chen F, Yang Y, Chen X. A first-principles and machine learning study on design of graphitic carbon nitride-based single-atom photocatalysts. ACS Appl Nano Mater 2024;7:11862-70.
132. Choudhary K, Garrity KF. InterMat: accelerating band offset prediction in semiconductor interfaces with DFT and deep learning. Digital Discov 2024;3:1365-77.
133. Guevarra D, Zhou L, Richter MH, et al. Materials structure-property factorization for identification of synergistic phase interactions in complex solar fuels photoanodes. npj Comput Mater 2022;8:747.
134. Jiang Z, Hu J, Samia A, Yu X. Predicting active sites in photocatalytic degradation process using an interpretable molecular-image combined convolutional neural network. Catalysts 2022;12:746.
135. Zhou Y, Wang X, Huang X, Deng H, Hu Y, Lu L. Predicting the photosynthetic ammonia on nanoporous cobalt zirconate via graph convolutional neural networks. Mol Catal 2022;529:112565.
136. Bonke SA, Trezza G, Bergamasco L, et al. Multi-variable multi-metric optimization of self-assembled photocatalytic CO2 reduction performance using machine learning algorithms. J Am Chem Soc 2024;146:15648-58.
137. Wang S, Mo P, Li D, Syed A. Intelligent algorithms enable photocatalyst design and performance prediction. Catalysts 2024;14:217.
138. Liu Y, Ge Q, Wang T, et al. Investigating the impact of pretreatment strategies on photocatalyst for accurate CO2RR productivity quantification: a machine learning approach. Chem Eng J 2023;473:145255.
139. Jaffari ZH, Abbas A, Lam SM, et al. Machine learning approaches to predict the photocatalytic performance of bismuth ferrite-based materials in the removal of malachite green. J Hazard Mater 2023;442:130031.
140. Özsoysal S, Oral B, Yıldırım R. Analysis of photocatalytic CO2 reduction over MOFs using machine learning. J Mater Chem A 2024;12:5748-59.
141. Yang Y, Zheng Y, Liu S, et al. Deep learning prediction of photocatalytic water splitting for hydrogen production under natural light based on experiments. Energy Convers Manage 2024;301:118007.
142. Navidpour AH, Hosseinzadeh A, Huang Z, Li D, Zhou JL. Application of machine learning algorithms in predicting the photocatalytic degradation of perfluorooctanoic acid. Catal Rev 2024;66:687-712.
143. Lira JO, Riella HG, Padoin N, Soares C. Computational fluid dynamics (CFD), artificial neural network (ANN) and genetic algorithm (GA) as a hybrid method for the analysis and optimization of micro-photocatalytic reactors: NOx abatement as a case study. Chem Eng J 2022;431:133771.
144. Li X, Maffettone PM, Che Y, Liu T, Chen L, Cooper AI. Combining machine learning and high-throughput experimentation to discover photocatalytically active organic molecules. Chem Sci 2021;12:10742-54.
145. Parmar N, Srivastava JK. Process optimization and kinetics study for photocatalytic ciprofloxacin degradation using TiO2 nanoparticle: a comparative study of artificial neural network and surface response methodology. J Indian Chem Soc 2022;99:100584.
146. Malayeri M, Nasiri F, Haghighat F, Lee C. Optimization of photocatalytic oxidation reactor for air purifier design: application of artificial neural network and genetic algorithm. Chem Eng J 2023;462:142186.
147. Truong H, Cuong Nguyen X, Hur J. Recent advances in g-C3N4-based photocatalysis for water treatment: magnetic and floating photocatalysts, and applications of machine-learning techniques. J Environ Manage 2023;345:118895.
148. Saadetnejad D, Oral B, Can E, Yıldırım R. Machine learning analysis of gas phase photocatalytic CO2 reduction for hydrogen production. Int J Hydrog Energy 2022;47:19655-68.
149. Gordanshekan A, Arabian S, Solaimany Nazar AR, Farhadian M, Tangestaninejad S. A comprehensive comparison of green Bi2WO6/g-C3N4 and Bi2WO6/TiO2 S-scheme heterojunctions for photocatalytic adsorption/degradation of Cefixime: artificial neural network, degradation pathway, and toxicity estimation. Chem Eng J 2023;451:139067.
150. Anandhi G, Iyapparaja M. Photocatalytic degradation of drugs and dyes using a maching learning approach. RSC Adv 2024;14:9003-19.
151. Liu Q, Pan K, Zhu L, et al. Ensemble learning to predict solar-to-hydrogen energy conversion based on photocatalytic water splitting over doped TiO2†. Green Chem 2023;25:8778-90.
152. Park H, Bentria ET, Rtimi S, Arredouani A, Bensmail H, El-mellouhi F. Accelerating the design of photocatalytic surfaces for antimicrobial application: machine learning based on a sparse dataset. Catalysts 2021;11:1001.
153. Kim CM, Jaffari ZH, Abbas A, Chowdhury MF, Cho KH. Machine learning analysis to interpret the effect of the photocatalytic reaction rate constant (k) of semiconductor-based photocatalysts on dye removal. J Hazard Mater 2024;465:132995.
154. Biswas T, Singh AK. Excitonic effects in absorption spectra of carbon dioxide reduction photocatalysts. npj Comput Mater 2021;7:640.
155. Jeong H, Yun B, Na S, et al. Multimodal deep learning models incorporating the adsorption characteristics of the adsorbent for estimating the permeate flux in dynamic membranes. J Membr Sci 2024;709:123105.
156. Zhang Z, Yang Z, Zhao Z, Liu Y, Wang C, Xu W. Multimodal deep-learning framework for accurate prediction of wettability evolution of laser-textured surfaces. ACS Appl Mater Interfaces 2023;Online ahead of print.
157. Liang W, Huang J, Sun J, Zhang P, Li A. Multiscale modeling and simulation of surface-enhanced spectroscopy and plasmonic photocatalysis. WIREs Comput Mol Sci 2023;13:e1665.
158. Kovačič Ž, Likozar B, Huš M. Photocatalytic CO2 reduction: a review of Ab initio mechanism, kinetics, and multiscale modeling simulations. ACS Catal 2020;10:14984-5007.
159. Gusarov S. Advances in computational methods for modeling photocatalytic reactions: a review of recent developments. Materials 2024;17:2119.
160. Loh JYY, Wang A, Mohan A, et al. Leave no photon behind: artificial intelligence in multiscale physics of photocatalyst and photoreactor design. Adv Sci 2024;11:e2306604.
161. Oliveira GX, Kuhn S, Riella HG, Soares C, Padoin N. Combining computational fluid dynamics, photon fate simulation and machine learning to optimize continuous-flow photocatalytic systems. React Chem Eng 2023;8:2119-33.
162. Huang G, Guo Y, Chen Y, Nie Z. Application of machine learning in material synthesis and property prediction. Materials 2023;16:5977.
163. Butler KT, Davies DW, Cartwright H, Isayev O, Walsh A. Machine learning for molecular and materials science. Nature 2018;559:547-55.
Comments
Comments must be written in English. Spam, offensive content, impersonation, and private information will not be permitted. If any comment is reported and identified as inappropriate content by OAE staff, the comment will be removed without notice. If you have any queries or need any help, please contact us at support@oaepublish.com.