REFERENCES
1. Ninomiya S, Adachi S. Optical properties of cbic and hexagonal CdSe. J Appl Phys 1995;78:4681-89.
2. Park SH, Casey MP, Falk J. Nonlinear optical properties of CdSe quantum dots. J Appl Phys 1993;73:8041-45.
3. Yuan J, Chen Y, Duan X, Yao B, Dai T, et al. CdSe optical parametric oscillator operating at 12.07 Mm with 170 mW output. Opt Laser Technol 2017;92:1-4.
4. Wu K, Lian T. Quantum confined colloidal nanorod heterostructures for solar-to-fuel conversion. Chem Soc Rev 2016;45:3781-810.
5. Du Z, Artemyev M, Wang J, Tang J. Performance improvement strategies for quantum dot-sensitized solar cells: a review. J Mater Chem A 2019 Feb;7:2464–89.
6. Schierhorn M, Boettcher SW, Kraemer S, Stucky GD, Moskovits M. Photoelectrochemical performance of CdSe nanorod arrays grown on a transparent conducting substrate. Nano Lett 2009;9:3262-7.
7. Liu M, Chen ZY, He XH, et al. Thermodynamics of ligand exchange with aromatic ligands on the surface of CdSe quantum dots. Chem Mater 2023;35:1868-76.
8. Protesescu L, Nachtegaal M, Voznyy O, et al. Atomistic description of thiostannate-capped CdSe nanocrystals: retention of four-coordinate SnS4 motif and preservation of Cd-rich stoichiometry. J Am Chem Soc 2015;137:1862-74.
9. Pan D, Wang Q, Pang J, Jiang S, Ji X, An L. Semiconductor “nano-onions” with multifold alternating CdS/CdSe or CdSe/CdS structure. Chem Mater 2006;18:4253-8.
10. Soni U, Pal A, Singh S, et al. Simultaneous type-Ⅰ/type-Ⅱ emission from CdSe/CdS/ZnSe nano-heterostructures. ACS Nano 2014;8:113-23.
11. Grünwald M, Rabani E, Dellago C. Mechanisms of the wurtzite to rocksalt transformation in CdSe nanocrystals. Phys Rev Lett 2006;96:255701.
12. Benkhettou N, Rached D, Soudini B, Driz M. High-pressure stability and structural properties of CdS and CdSe. Phys Status Solidi B 2004;241:101-7.
13. Zahn D, Grin Y, Leoni S. Mechanism of the pressure-induced wurtzite to rocksalt transition of CdSe. Phys Rev B 2005;72:064110.
14. Bealing C, Martoňák R, Molteni C. Pressure-induced structural phase transitions in CdSe: a metadynamics study. J Chem Phys 2009;130:124712.
15. Bealing C, Martoňák R, Molteni C. The wurtzite to rock salt transition in CdSe: a comparison between molecular dynamics and metadynamics simulations. Solid State Sci 2010;12:157-62.
16. Durandurdu M. Orthorhombic intermediate phases for the wurtzite-to-rocksalt phase transformation of CdSe: an ab initio constant pressure study. Chem Phys 2010;369:55-8.
17. Shimojo F, Kodiyalam S, Ebbsjö I, Kalia RK, Nakano A, Vashishta P. Atomistic mechanisms for wurtzite-to-rocksalt structural transformation in cadmium selenide under pressure. Phys Rev B 2004;70:184111.
18. Tolbert SH, Alivisatos AP. The wurtzite to rock salt structural transformation in CdSe nanocrystals under high pressure. J Chem Phys 1995;102:4642-56.
19. Stokes HT, Gunter J, Hatch DM, Dong J, Wang H, Lewis JP. Bilayer sliding mechanism for the wurtzite-to-rocksalt transition. Phys Rev B 2007;76:012102.
20. Fan H, Liang J, Zhang Y, et al. Phase transition of CdSe nanocrystallines with controlled morphologies induced by ratios of ethanolamine and water in their mixed solution. Solid State Sci 2008;10:901-7.
21. Li Y, Lin C, Li G, Xu J, Li X, Liu J. Structure determination of the high-pressure phase of CdSe. J Appl Phys 2014;115:223507.
22. Tolbert SH, Alivisatos AP. Size dependence of a first order solid-solid phase transition: the wurtzite to rock salt transformation in CdSe nanocrystals. Science 1994;265:373-6.
23. Li B, Bian K, Zhou X, et al. Pressure compression of CdSe nanoparticles into luminescent nanowires. Sci Adv 2017;3:e1602916.
24. Ibrahimova LN, Abdullayev NM, Aliyev ME, Garashova GA, Aliyev YI. Phase formation process in CdSe thin films. East Eur J Phys 2024:493-6.
25. Dhara S, Liu CP, Chen SF, Eliseev AA, Petukhov DI. Resonance raman spectroscopic study of shape-induced phase transition in CdSe nanoclusters. J Raman Spectrosc 2015;46:1-3.
26. Rivera-Marquez JA, Contreras-Rascón JI, Lozada-Morales R, et al. Raman spectroscopy study of the wurtzite-zinc blende phase transition of bare CdSe nanoparticles. Mater Sci Eng B 2020;260:114621.
27. Zhang L, Yang M, Zhang S, Niu H. Unveiling the crystallization mechanism of cadmium selenide via molecular dynamics simulation with machine-learning-based deep potential. J Mater Sci Technol 2024;185:23-31.
28. Sheppard D, Xiao P, Chemelewski W, Johnson DD, Henkelman G. A generalized solid-state nudged elastic band method. J Chem Phys 2012;136:074103.
29. Qian GR, Dong X, Zhou XF, Tian Y, Oganov AR, et al. Variable cell nudged elastic band method for studying solid-solid structural phase transitions. Comput Phys Commun 2013;184:2111-8.
30. Dellago C, Bolhuis PG, Chandler D. Efficient transition path sampling: application to Lennard-Jones cluster rearrangements. J Chem Phys 1998;108:9236-45.
31. Bolhuis PG, Chandler D, Dellago C, Geissler PL. Transiton path sampling: throwing ropes over rough mountain passes, in the dark. Ann Rev Phys Chem 2002;53:291-318.
32. Zhu L, Cohen RE, Strobel TA. Phase transition pathway sampling via swarm intelligence and graph theory. J Phys Chem Lett 2019;10:5019-26.
33. Eberhart RC, Shi Y. Comparing inertia weights and constriction factors in particle swarm optimization. In: Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512); 2000 Jul 16-19; La Jolla, USA. IEEE; 2000. pp. 84–8.
35. Behler J. Perspective: machine learning potentials for atomistic simulations. J Chem Phys 2016;145:170901.
36. Braeckevelt T, Goeminne R, Vandenhaute S, et al. Accurately determining the phase transition temperature of CsPbI3 via random-phase approximation calculations and phase-transferable machine learning potentials. Chem Mater 2022;34:8561-76.
37. Verdi C, Karsai F, Liu P, Jinnouchi R, Kresse G. Thermal transport and phase transitions of zirconia by on-the-fly machine-learned interatomic potentials. npj Comput Mater 2021;7:156.
38. Wisesa P, Andolina CM, Saidi WA. Machine-learning accelerated first-principles accurate modeling of the solid-liquid phase transition in MgO under mantle conditions. J Phys Chem Lett 2023;14:8741-8.
39. Zhao Y, Sun J, Yang L, Zhai D, Sun L, Deng W. Umbrella sampling with machine learning potentials applied for solid phase transition of GeSbTe. Chem Phys Lett 2022;803:139813.
40. Fantasia A, Rovaris F, Abou El Kheir O, et al. Development of a machine learning interatomic potential for exploring pressure-dependent kinetics of phase transitions in germanium. J Chem Phys 2024;161:014110.
41. Santos-Florez PA, Yanxon H, Kang B, Yao Y, Zhu Q. Size-dependent nucleation in crystal phase transition from machine learning metadynamics. Phys Rev Lett 2022;129:185701.
43. Xiao P, Sheppard D, Rogal J, Henkelman G. Solid-state dimer method for calculating solid-solid phase transitions. J Chem Phys 2014;140:174104.
44. Zhu L, Amsler M, Fuhrer T, et al. A fingerprint based metric for measuring similarities of crystalline structures. J Chem Phys 2016;144:034203.
45. Coello CAC, Pulido GT, Lechuga MS. Handling multiple objectives with particle swarm optimization. IEEE Trans Evol Comput 2004;8:256-79.
47. Sadeghi A, Ghasemi SA, Schaefer B, Mohr S, Lill MA, Goedecker S. Metrics for measuring distances in configuration spaces. J Chem Phys 2013;139:184118.
48. Parsaeifard B, Sankar De D, Christensen AS, et al. An assessment of the structural resolution of various fingerprints commonly used in machine learning. Mach Learn Sci Technol 2021;2:015018.
49. Parsaeifard B, De DS, Finkler JA, Goedecker S. Fingerprint-based detection of non-local effects in the electronic structure of a simple single component covalent system. Condens Matter 2021;6:9.
50. Parsaeifard B, Goedecker S. Manifolds of quasi-constant SOAP and ACSF fingerprints and the resulting failure to machine learn four-body interactions. J Chem Phys 2022;156:034302.
51. Tao S, Shao X, Zhu L. Accelerating structural optimization through fingerprinting space integration on the potential energy surface. J Phys Chem Lett 2024;15:3185-90.
52. Kruskal JB, Jr. On the shortest spanning subtree of a graph and the traveling salesman problem. Proc Am Math Soc 1956;7:48–50. Available from: http://5010.mathed.usu.edu/Fall2018/THigham/Krukskal.pdf [Last accessed on 21 Dec 2024].
53. Moore EF. The shortest path through a maze. In: Proceedings of the International Symposium on the Theory of Switching. 1959. pp. 285–92. Available from: https://scirp.org/reference/referencespapers?referenceid=3304833 [Last accessed on 21 Dec 2024].
54. Batzner S, Musaelian A, Sun L, et al. E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials. Nat Commun 2022;13:2453.
55. Martinez B JA, Shao X, Jiang K, Pavanello M. Entropy is a good approximation to the electronic (static) correlation energy. J Chem Phy 2023;159:191102.
56. Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 1996;54:11169.
58. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett 1996;77:3865.
59. Perdew JP, Ruzsinszky A, Csonka GI, et al. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys Rev Lett 2008;100:136406.
61. Huang J, Kovalenko MV, Talapin DV. Alkyl chains of surface ligands affect polytypism of CdSe nanocrystals and play an important role in the synthesis of anisotropic nanoheterostructures. J Am Chem Soc 2010;132:15866-8.
62. Togo A. First-principles phonon calculations with phonopy and phono3py. J Phys Soc Jpn 2023;92:012001.
63. Meng Y, Yan C, Lai J, et al. Enhanced optical properties of chemical vapor deposited single crystal diamond by low-pressure/high-temperature annealing. Proc Natl Acad Sci U S A 2008;105:17620-5.
64. Cargnello M, Gordon TR, Murray CB. Solution-phase synthesis of titanium dioxide nanoparticles and nanocrystals. Chem Rev 2014;114:9319-45.
65. Greetham GM, Burgos P, Cao Q, Clark IP, Codd PS, et al. Ultra: a unique instrument for time-resolved spectroscopy. Appl Spectrosc 2010;64:1311–9. Available from: https://www.researchgate.net/publication/49670159_Ultra_A_Unique_Instrument_for_Time-Resolved_Spectroscopy [Last accessed on 21 Dec 2024]21144146.
66. Robert E, Khacef A, Cachoncinlle C, Pouvesle JM. Time-resolved spectroscopy of high pressure rare gases excited by an energetic flash X-ray source. Opt Commun 1995;117:179-88.
67. Alfè D, Price GD, Gillan MJ. Thermodynamics of hexagonal-close-packed iron under Earth’s core conditions. Phys Rev B 2001;64:045123.
68. Micheletti C, Laio A, Parrinello M. Reconstructing the density of states by history-dependent metadynamics. Phys Rev Lett 2004;92:170601.