1. Zhang L, Li J, Wang Y, et al. Understanding the formation of equiaxed α during dynamic precipitation in titanium alloys by elastoplastic phase field simulation. J Mater Res Technol 2023;27:8181-96.
2. Liu G, Xie D, Wang S, Misra A, Wang J. Mesoscale crystal plasticity modeling of nanoscale Al–Al2Cu eutectic alloy. Int J Plasticity 2019;121:134-52.
3. Zhang J, Li H, Sun X, Zhan M. A multi-scale MCCPFEM framework: modeling of thermal interface grooving and deformation anisotropy of titanium alloy with lamellar colony. Int J Plasticity 2020;135:102804.
4. Zhang H, Liu J, Sui D, Cui Z, Fu M. Study of microstructural grain and geometric size effects on plastic heterogeneities at grain-level by using crystal plasticity modeling with high-fidelity representative microstructures. Int J Plasticity 2018;100:69-89.
5. Liu P, Wang Z, Xiao Y, et al. Integration of phase-field model and crystal plasticity for the prediction of process-structure-property relation of additively manufactured metallic materials. Int J Plasticity 2020;128:102670.
6. Kotha S, Ozturk D, Ghosh S. Parametrically homogenized constitutive models (PHCMs) from micromechanical crystal plasticity FE simulations: Part II: thermo-elasto-plastic model with experimental validation for titanium alloys. Int J Plasticity 2019;120:320-39.
7. Nguyen C, Cailletaud G, Barbe F, Marini B, Nguyen D, Phan H. Identification of crystal plasticity parameters for a non-irradiated and irradiated A508 bainite steel. Metall Res Technol 2021;118:204.
8. Li J, Romero I, Segurado J. Development of a thermo-mechanically coupled crystal plasticity modeling framework: application to polycrystalline homogenization. Int J Plasticity 2019;119:313-30.
9. Bandyopadhyay R, Prithivirajan V, Sangid MD. Uncertainty quantification in the mechanical response of crystal plasticity simulations. JOM 2019;71:2612-24.
10. Sedighiani K, Diehl M, Traka K, Roters F, Sietsma J, Raabe D. An efficient and robust approach to determine material parameters of crystal plasticity constitutive laws from macro-scale stress–strain curves. Int J Plasticity 2020;134:102779.
11. Zhang K, Holmedal B, Hopperstad O, et al. Multi-level modelling of mechanical anisotropy of commercial pure aluminium plate: crystal plasticity models, advanced yield functions and parameter identification. Int J Plasticity 2015;66:3-30.
12. Tu X, Shahba A, Shen J, Ghosh S. Microstructure and property based statistically equivalent RVEs for polycrystalline-polyphase aluminum alloys. Int J Plasticity 2019;115:268-92.
13. Azhari F, Wallbrink C, Sterjovski Z, et al. Predicting the complete tensile properties of additively manufactured Ti-6Al-4V by integrating three-dimensional microstructure statistics with a crystal plasticity model. Int J Plasticity 2022;148:103127.
14. Guery A, Hild F, Latourte F, Roux S. Identification of crystal plasticity parameters using DIC measurements and weighted FEMU. Mech Mater 2016;100:55-71.
15. Chakraborty A, Eisenlohr P. Evaluation of an inverse methodology for estimating constitutive parameters in face-centered cubic materials from single crystal indentations. Eur J Mech A Solid 2017;66:114-24.
16. Cauvin L, Raghavan B, Bouvier S, Wang X, Meraghni F. Multi-scale investigation of highly anisotropic zinc alloys using crystal plasticity and inverse analysis. Mater Sci Eng A 2018;729:106-18.
17. Cao B, Yang S, Sun A, Dong Z, Zhang T. Domain knowledge-guided interpretive machine learning: formula discovery for the oxidation behavior of ferritic-martensitic steels in supercritical water. J Mater Inf 2022;2:4.
18. Zhang T. New tool in the box. J Mater Inf 2021;1:1.
19. Lu T, Li M, Lu W, Zhang T. Recent progress in the data-driven discovery of novel photovoltaic materials. J Mater Inf 2022;2:7.
20. Guo C, Hu X, Han X, et al. Laser precise synthesis of oxidation-free high-entropy alloy nanoparticle libraries. J Am Chem Soc 2024;146:18407-17.
21. Debnath A, Krajewski AM, Sun H, et al. Generative deep learning as a tool for inverse design of high entropy refractory alloys. J Mater Inf 2021;1:3.
22. Liu P, Huang H, Antonov S, et al. Machine learning assisted design of γ’-strengthened Co-base superalloys with multi-performance optimization. npj Comput Mater 2020;6:334.
23. Hu X, Zhao J, Li J, Wang Z, Chen Y, Wang J. Global-oriented strategy for searching ultrastrength martensitic stainless steels. Adv Theor Simul 2022;5:2100411.
24. Hu X, Chen Y, Lu J, et al. Three-step learning strategy for designing 15Cr ferritic steels with enhanced strength and plasticity at elevated temperature. J Mater Sci Technol 2023;164:79-94.
25. Xue D, Balachandran PV, Hogden J, Theiler J, Xue D, Lookman T. Accelerated search for materials with targeted properties by adaptive design. Nat Commun 2016;7:11241.
26. Yuan R, Liu Z, Balachandran PV, et al. Accelerated discovery of large electrostrains in BaTiO3-based piezoelectrics using active learning. Adv Mater 2018;30:1702884.
27. Hu X, Zhao J, Chen Y, Li J, Wang Z, Wang J. Continually reactivating iterative-projection method for instantiating microstructure from two-point statistics. Acta Mater 2022;238:118230.
28. Jiang M, Hu X, Li J, Wang Z, Wang J. An interface-oriented data-driven scheme applying into eutectic patterns evolution. Mater Design 2022;223:111222.
29. Hu X, Zhao J, Chen Y, et al. Structure-property modeling scheme based on optimized microstructural information by two-point statistics and principal component analysis. J Mater Inf 2022;2:5.
30. Xue D, Xue D, Yuan R, et al. An informatics approach to transformation temperatures of NiTi-based shape memory alloys. Acta Mater 2017;125:532-41.
31. Zhang H, Fu H, Zhu S, Yong W, Xie J. Machine learning assisted composition effective design for precipitation strengthened copper alloys. Acta Mater 2021;215:117118.
32. Goswami S, Anitescu C, Chakraborty S, Rabczuk T. Transfer learning enhanced physics informed neural network for phase-field modeling of fracture. Theor Appl Fract Mec 2020;106:102447.
33. Samaniego E, Anitescu C, Goswami S, et al. An energy approach to the solution of partial differential equations in computational mechanics via machine learning: concepts, implementation and applications. Comput Method Appl M 2020;362:112790.
34. Wei S, Kim J, Tasan CC. Boundary micro-cracking in metastable Fe45Mn35Co10Cr10 high-entropy alloys. Acta Mater 2019;168:76-86.
35. Ebrahimi M, Liu G, Li C, et al. Characteristic investigation of trilayered Cu/Al8011/Al1060 composite: interface morphology, microstructure, and in-situ tensile deformation. Prog Nat Sci Mater Int 2021;31:679-87.
36. Yan D, Tasan CC, Raabe D. High resolution in situ mapping of microstrain and microstructure evolution reveals damage resistance criteria in dual phase steels. Acta Mater 2015;96:399-409.
37. Lebensohn RA, Kanjarla AK, Eisenlohr P. An elasto-viscoplastic formulation based on fast Fourier transforms for the prediction of micromechanical fields in polycrystalline materials. Int J Plasticity 2012;32-3:59-69.
38. Lebensohn RA, Tomé CN, Castañeda PP. Self-consistent modelling of the mechanical behaviour of viscoplastic polycrystals incorporating intragranular field fluctuations. Philos Mag 2007;87:4287-322.
39. Lebensohn RA, Brenner R, Castelnau O, Rollett AD. Orientation image-based micromechanical modelling of subgrain texture evolution in polycrystalline copper. Acta Mater 2008;56:3914-26.
40. Eisenlohr P, Diehl M, Lebensohn R, Roters F. A spectral method solution to crystal elasto-viscoplasticity at finite strains. Int J Plasticity 2013;46:37-53.
41. Michel JC, Moulinec H, Suquet P. A computational method based on augmented lagrangians and fast Fourier transforms for composites with high contrast. Comput Model Eng Sci 2000;2:79-88.
42. James G, Witten D, Hastie T, Tibshirani R, Taylor J. Linear regression. An introduction to statistical learning. Cham: Springer International Publishing; 2023. pp. 69-134.
43. Cule E, De Iorio M. Ridge regression in prediction problems: automatic choice of the ridge parameter. Genet Epidemiol 2013;37:704-14.
44. McDonald GC. Ridge regression. WIREs Comp Stats 2009;1:93-100.
45. Moguerza JM, Muñoz A. Support vector machines with applications. Statist Sci 2006;21:322-36.
46. Pisner DA, Schnyer DM. Chapter 6 - Support vector machine. In: Machine learning. Elsevier; 2020. pp. 101-21.
47. Auret L, Aldrich C. Interpretation of nonlinear relationships between process variables by use of random forests. Miner Eng 2012;35:27-42.
48. Rigatti SJ. Random forest. J Insur Med 2017;47:31-9.
49. Deringer VL, Bartók AP, Bernstein N, Wilkins DM, Ceriotti M, Csányi G. Gaussian process regression for materials and molecules. Chem Rev 2021;121:10073-141.
50. Schulz E, Speekenbrink M, Krause A. A tutorial on Gaussian process regression: modelling, exploring, and exploiting functions. J Math Psychol 2018;85:1-16.
51. Wang J. An intuitive tutorial to Gaussian process regression. Comput Sci Eng 2023;25:4-11.
52. Jiang M, Chen Y, Yang Z, et al. Crystal plasticity modeling of deformation behavior of Al–Al2Cu eutectics based on high-fidelity representative microstructures. J Mater Res Technol 2024;29:5259-70.
53. Reed R. Aluminium 2. A review of deformation properties of high purity aluminium and dilute aluminium alloys. Cryogenics 1972;12:259-91.
54. Pham HH, Williams ME, Mahaffey P, Radovic M, Arroyave R, Cagin T. Finite-temperature elasticity of fcc Al: atomistic simulations and ultrasonic measurements. Phys Rev B 2011;84:064101.
55. Eshelman FR, Smith JF. Single-crystal elastic constants of Al2Cu. J Appl Phys 1978;49:3284-8.
56. Roters F, Eisenlohr P, Hantcherli L, Tjahjanto D, Bieler T, Raabe D. Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: theory, experiments, applications. Acta Mater 2010;58:1152-211.
57. Segurado J, Lebensohn RA, Llorca J, Tomé CN. Multiscale modeling of plasticity based on embedding the viscoplastic self-consistent formulation in implicit finite elements. Int J Plasticity 2012;28:124-40.
58. Balachandran PV, Xue D, Theiler J, Hogden J, Lookman T. Adaptive strategies for materials design using uncertainties. Sci Rep 2016;6:19660.
59. Simmons G. Single crystal elastic constants and calculated aggregate properties. Southern methodist university press; 1965.
60. Mahata A, Asle Zaeem M. Effects of solidification defects on nanoscale mechanical properties of rapid directionally solidified Al-Cu Alloy: a large scale molecular dynamics study. J Cryst Growth 2019;527:125255.
61. Davidson CJ, Smith IO, Chadwick GA. Effect of heat treatment and interlamellar spacing on the tensile deformation of the aligned Al CuAl2 eutectic. Acta Metall 1980;28:61-73.
62. Dey BN, Tyson WR. Plastic deformation of CuAl2. Phys Stat Sol 1972;9:215-21.
63. Cheng J, Yun Y, Rui J. Enhanced tensile plasticity in ultrafine lamellar eutectic Al-CuBased composites with α-Al dendrites prepared by progressive solidification. Appl Sci 2019;9:3922.
64. Pattnaik A, Lawley A. Deformation and fracture in AI-CuAl2 eutectic composites. Metall Trans 1971;2:1529-36.
65. Zhang X, Li S, Guo X, Wang H, Yu Q, Wu P. Effects of texture and twinning on the torsional behavior of magnesium alloy solid rod: a crystal plasticity approach in comparison with uniaxial tension/compression. Int J Mech Sci 2021;191:106062.
66. Wang H, Zhang X, Wu W, et al. On the torsional and coupled torsion-tension/compression behavior of magnesium alloy solid rod: a crystal plasticity evaluation. Int J Plasticity 2022;151:103213.
67. Xu Y. A non-local methodology for geometrically necessary dislocations and application to crack tips. Int J Plasticity 2021;140:102970.
68. Yu X, Xu Y, Morales-espejel G, Dunne F, Dini D. On the importance of crystal plasticity finite element discretisation for the identification of crack initiation in RCF using energy-based criteria. Comput Mater Sci 2024;232:112651.
69. Garatti S, Bittanti S. A new paradigm for parameter estimation in system modeling. Adapt Control Signal 2013;27:667-87.
70. Sin G, De Pauw DJ, Weijers S, Vanrolleghem PA. An efficient approach to automate the manual trial and error calibration of activated sludge models. Biotechnol Bioeng 2008;100:516-28.
71. Shahmardani M, Vajragupta N, Hartmaier A. Robust optimization scheme for inverse method for crystal plasticity model parametrization. Materials 2020;13:735.
72. Depriester D, Goulmy J, Barrallier L. Crystal plasticity simulations of in situ tensile tests: a two-step inverse method for identification of CP parameters, and assessment of CPFEM capabilities. Int J Plasticity 2023;168:103695.
73. Tarantola A. Inverse problem theory and methods for model parameter estimation. 2005.
Comments
Comments must be written in English. Spam, offensive content, impersonation, and private information will not be permitted. If any comment is reported and identified as inappropriate content by OAE staff, the comment will be removed without notice. If you have any queries or need any help, please contact us at support@oaepublish.com.