REFERENCES

1. Opeka MM, Talmy IG, Zaykoski JA. Oxidation-based materials selection for 2000 °C + hypersonic aerosurfaces: theoretical considerations and historical experience. J Mater Sci 2004;39:5887-904.

2. Fahrenholtz WG, Hilmas GE, Talmy IG, Zaykoski JA. Refractory diborides of zirconium and hafnium. J Am Ceram Soc 2007;90:1347-64.

3. Ni D, Cheng Y, Zhang J, et al. Advances in ultra-high temperature ceramics, composites, and coatings. J Adv Ceram 2022;11:1-56.

4. Zou J, Zhang GJ, Hu CF, et al. Strong ZrB2-SiC-WC ceramics at 1600 °C. J Am Ceram Soc 2012;95:874-8.

5. Wang Y, Wen B, Jiao X, et al. The highest melting point material: searched by Bayesian global optimization with deep potential molecular dynamics. J Adv Ceram 2023;12:803-14.

6. Ma HB, Man ZY, Liu JX, Xu FF, Zhang GJ. Microstructures, solid solution formation and high-temperature mechanical properties of ZrB2 ceramics doped with 5vol.% WC. Mater Design 2015;81:133-40.

7. Silvestroni L, Gilli N, Migliori A, et al. A simple route to fabricate strong boride hierarchical composites for use at ultra-high temperature. Compos Part B Eng 2020;183:107618.

8. Silvestroni L, Failla S, Vinokurov V, Neshpor I, Grigoriev O. Core-shell structure: an effective feature for strengthening ZrB2 ceramics. Scr Mater 2019;160:1-4.

9. Silvestroni L, Mungiguerra S, Sciti D, Di Martino GD, Savino R. Effect of hypersonic flow chemical composition on the oxidation behavior of a super-strong UHTC. Corros Sci 2019;159:108125.

10. Chen H, Xiang H, Dai FZ, Liu J, Zhou Y. Porous high entropy (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)B2: a novel strategy towards making ultrahigh temperature ceramics thermal insulating. J Mater Sci Technol 2019;35:2404-8.

11. Li RZ, Wang XG, Yuan JH, et al. Enhanced high-temperature strength in textured (Ti1/3Zr1/3Hf1/3)B2 medium-entropy ceramics via strong magnetic field. J Am Ceram Soc 2023;106:5440-53.

12. Yang QQ, Wang XG, Wu P, et al. Ultra-high strength medium-entropy (Ti,Zr,Ta)C ceramics at 1800 °C by consolidating a core-shell structured powder. J Am Ceram Soc 2022;105:823-9.

13. Feng L, Chen WT, Fahrenholtz WG, Hilmas GE. Strength of single-phase high-entropy carbide ceramics up to 2300 °C. J Am Ceram Soc 2021;104:419-27.

14. Gild J, Zhang Y, Harrington T, et al. High-entropy metal diborides: a new class of high-entropy materials and a new type of ultrahigh temperature ceramics. Sci Rep 2016;6:37946.

15. Xiang H, Xing Y, Dai F, et al. High-entropy ceramics: present status, challenges, and a look forward. J Adv Ceram 2021;10:385-441.

16. Wen Z, Tang Z, Liu Y, Zhuang L, Yu H, Chu Y. Ultrastrong and high thermal insulating porous high-entropy ceramics up to 2000 °C. Adv Mater 2024;36:e2311870.

17. Zhang L, Han J, Wang H, Car R, Weinan E. Deep potential molecular dynamics: a scalable model with the accuracy of quantum mechanics. Phys Rev Lett 2018;120:143001.

18. Behler J, Parrinello M. Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys Rev Lett 2007;98:146401.

19. Bartók AP, Payne MC, Kondor R, Csányi G. Gaussian approximation potentials: the accuracy of quantum mechanics, without the electrons. Phys Rev Lett 2010;104:136403.

20. Deng B, Zhong P, Jun K, et al. CHGNet as a pretrained universal neural network potential for charge-informed atomistic modelling. Nat Mach Intell 2023;5:1031-41.

21. Takamoto S, Shinagawa C, Motoki D, et al. Towards universal neural network potential for material discovery applicable to arbitrary combination of 45 elements. Nat Commun 2022;13:2991.

22. Chen C, Ong SP. A universal graph deep learning interatomic potential for the periodic table. Nat Comput Sci 2022;2:718-28.

23. Dai FZ, Wen B, Sun Y, Xiang H, Zhou Y. Theoretical prediction on thermal and mechanical properties of high entropy (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)C by deep learning potential. J Mater Sci Technol 2020;43:168-74.

24. Dai FZ, Sun Y, Wen B, Xiang H, Zhou Y. Temperature dependent thermal and elastic properties of high entropy (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)B2: molecular dynamics simulation by deep learning potential. J Mater Sci Technol 2021;72:8-15.

25. Dai FZ, Wen B, Sun Y, Ren Y, Xiang H, Zhou Y. Grain boundary segregation induced strong UHTCs at elevated temperatures: a universal mechanism from conventional UHTCs to high entropy UHTCs. J Mater Sci Technol 2022;123:26-33.

26. Dai FZ, Wen B, Xiang H, Zhou Y. Grain boundary strengthening in ZrB2 by segregation of W: atomistic simulations with deep learning potential. J Eur Ceram Soc 2020;40:5029-36.

27. Zhang D, Liu X, Zhang X, et al. DPA-2: towards a universal large atomic model for molecular and material simulation. arXiv. [Preprint.] Dec 24, 2023 [accessed 2024 Aug 8]. Available from: https://arxiv.org/abs/2312.15492.

28. Zhang D, Bi H, Dai FZ, et al. Pretraining of attention-based deep learning potential model for molecular simulation. npj Comput Mater 2024;10:94.

29. Zhang L, Lin DY, Wang H, Car R, Weinan E. Active learning of uniformly accurate interatomic potentials for materials simulation. Phys Rev Mater 2019;3:023804.

30. Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 1996;6:15-50.

31. Blöchl PE. Projector augmented-wave method. Phys Rev B Condens Matter 1994;50:17953-79.

32. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett 1996;77:3865-8.

33. Pack JD, Monkhorst HJ. “Special points for Brillouin-zone integrations” - a reply. Phys Rev B 1977;16:1748-9.

34. Wang H, Zhang L, Han J, Weinan E. DeePMD-kit: a deep learning package for many-body potential energy representation and molecular dynamics. Comput Phys Commun 2018;228:178-84.

35. Zeng J, Zhang D, Lu D, et al. DeePMD-kit v2: a software package for deep potential models. J Chem Phys 2023;159:054801.

36. Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 1995;117:1-19.

37. Ma HB, Zhang GJ, Liu HL, Liu JX, Lu Y, Xu FF. Effect of WC or ZrC addition on thermal residual stresses in ZrB2-SiC ceramics. Mater Design 2016;110:340-5.

38. Ruby E, Windsch, Chang Y. Ternary phase equilibria in transition metal-boron-carbon-silicon systems. Available from: https://www.semanticscholar.org/paper/Ternary-phase-equilibria-in-transition-systems-Ruby-Windsch/2d30dae05430ca0696e725f9a05b98aa47a02e88. [Last accessed on 8 Aug 2024].

39. Ma HB, Zou J, Zhu JT, Liu LF, Zhang GJ. Segregation of tungsten atoms at ZrB2 grain boundaries in strong ZrB2-SiC-WC ceramics. Scr Mater 2018;157:76-80.

40. Su W, Chen L, Zhang W, Huo S, Wang Y, Zhou Y. Insights into grain boundary segregation and solubility limit of Cr in (TiZrNbTaCr)C. J Mater Sci Technol 2023;139:1-9.

41. Su W, Chen L, Huo S, Zhang W, Wang Y, Zhou Y. Fracture mode transition from intergranular to transgranular in (TiZrNbTaCr)C: the grain boundary purification effect of Cr carbide. J Eur Ceram Soc 2024;44:1881-9.

42. Dai FZ, Zhou Y, Sun W. Segregation of solute atoms (Y, Nb, Ta, Mo and W) in ZrB2 grain boundaries and their effects on grain boundary strengths: a first-principles investigation. Acta Mater 2017;127:312-8.

43. Silvestroni L, Kleebe HJ, Fahrenholtz WG, Watts J. Super-strong materials for temperatures exceeding 2000 °C. Sci Rep 2017;7:40730.

44. Mo P, Li C, Zhao D, et al. Accurate and efficient molecular dynamics based on machine learning and non von Neumann architecture. npj Comput Mater 2022;8:107.

45. Jain A, Ong SP, Hautier G, et al. Commentary: the materials project: a materials genome approach to accelerating materials innovation. APL Mater 2013;1:011002.

46. Curtarolo S, Setyawan W, Wang S, et al. AFLOWLIB.ORG: a distributed materials properties repository from high-throughput ab initio calculations. Comput Mater Sci 2012;58:227-35.

47. Saal JE, Kirklin S, Aykol M, Meredig B, Wolverton C. Materials design and discovery with high-throughput density functional theory: the Open Quantum Materials Database (OQMD). JOM 2013;65:1501-9.

Journal of Materials Informatics
ISSN 2770-372X (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/