1. Soni, R.; Verma, R.; Kumar, G. R.; Singh, H. Progress in aerospace materials and ablation resistant coatings: a focused review. Opt. Laser. Technol. 2024, 177, 111160.
2. Guo, M.; Yu, K.; Yang, J.; Zhang, P.; Zhang, Y.; Zhu, D. B2O3-reinforced ablative materials with superior and comprehensive ablation resistance used in aerospace propulsion thermal protection systems. Polym. Degrad. Stab. 2024, 223, 110740.
3. Kumar, A.; Ranjan, C.; Kumar, K.; Reddy, M. H.; Babu, B. S.; Katiyar, J. K. State-of-the-art on advancements in carbon-phenolic and carbon-elastomeric ablatives. Polymers 2024, 16, 1461.
4. Xu, W.; Song, W.; Jia, X.; et al. Nano-silica modified lightweight and high-toughness carbon fiber/phenolic ablator with excellent thermal insulation and ablation performance. Def. Technol. 2024, 31, 192-9.
5. Xia, C.; Xie, W.; Meng, S.; Gao, B.; Ye, J. Preparation of integrated carbon fiber stitched fabric reinforced (SiBCN) ceramic/resin double-layered composites for ablation resistance, thermal insulation and compression resistance performance. Compos. Sci. Technol. 2024, 252, 110629.
6. Vekariya, N.; Patel, B.; Patel, R.; Valand, J. Microstructural investigation and performance of carbon matrix composites developed through facile pitch modification route. Diam. Relat. Mater. 2024, 145, 111056.
7. Agarwal, N.; Rangamani, A.; Bhavsar, K.; et al. An overview of carbon-carbon composite materials and their applications. Front. Mater. 2024, 11, 1374034.
8. Moyer, C. B.; Wool, M. R. Aerotherm charring material thermal response and ablation program, version 3. volume 1. Program description and sample problems. 1970. https://archive.org/details/DTIC_AD0875062. (accessed 11 Apr 2025)
9. Chen, Y. K.; Milos, F. Three-dimensional ablation and thermal response simulation system. In Proceedings of the 38th AIAA thermophysics conference, Toronto, Canada. Jun 06-09, 2005. 2012; pp. 5064.
10. Chen, Y. K.; Milos, F. Multidimensional effects on heatshield thermal response for the Orion crew module. In Proceedings of the 39th AIAA Thermophysics Conference, Miami, USA. Jun 25-28, 2007. 2012; pp. 4397.
11. Chen, Y. K.; Milos, F.; Gokcen, T. Validation of a three-dimensional ablation and thermal response simulation code. In Proceedings of the 10th AIAA/ASME Joint Thermophysics and Heat Transfer Conference, Chicago, USA. Jun 28 - Jul 01, 2010. 2012; pp. 4645.
13. Dec, J.; Laub, B.; Braun, R. Two-dimensional finite element ablative thermal response analysis of arcjet stagnation tests. In Proceedings of the 42nd AIAA Thermophysics Conference, Honolulu, USA. Jun 27-30, 2011. 2012; pp. 3617.
14. Kavimani, V.; Gopal, P. M.; Thankachan, T.; Sivamaran, V. 5 - Evolution and recent advancements of composite materials in thermal applications. In: Applications of Composite Materials in Engineering. Elsevier; 2025. pp. 119-38.
15. Meicong, W.; Xin, Y.; Jixiang, S.; et al. Effect of phenolic resin pyrolysis on thermal properties of SiFRP composites under high heating rates. J. Phys. Conf. Ser. 2024, 2891, 112023.
16. Song, J.; Zhang, Y. Effect of an interface layer on thermal conductivity of polymer composites studied by the design of double-layered and triple-layered composites. Int. J. Heat. Mass. Transfer. 2019, 141, 1049-55.
17. Xu, Y.; Ye, H.; Zhang, L.; Cai, Q. Investigation on the effective thermal conductivity of carbonized high silica/phenolic ablative material. Int. J. Heat. Mass. Transfer. 2017, 115, 597-603.
19. Kumar, C. V.; Kandasubramanian, B. Advances in ablative composites of carbon based materials: a review. Ind. Eng. Chem. Res. 2019, 58, 22663-701.
20. Guo, N.; Wang, M.; Wang, J.; Wu, Z.; Gao, J. Utilizing a multi-layer structure to regulate the thermal conductivity of an advanced BN + EP composite insulation material: effects of content, number of layers, and curing temperature on composites. Polym. Compos. 2024, 45, 3536-50.
21. Manocha, L. M. High performance carbon-carbon composites. Sadhana 2003, 28, 349-58.
22. Reis, L. M. M.; da Silveira, P. H. P. M.; Chaves, Y. S.; et al. Thermal and ballistic characterization of epoxy matrix composites reinforced with babassu (Attalea speciosa) fiber: an experimental investigation. J. Mater. Res. Technol. 2025, 35, 2176-87.
23. Chen, L.; Zhao, P.; Xie, H.; Yu, W. Thermal properties of epoxy resin based thermal interfacial materials by filling Ag nanoparticle-decorated graphene nanosheets. Compos. Sci. Technol. 2016, 125, 17-21.
24. Guo, L.; Peng, J.; Guo, C.; Huo, C.; Sun, R.; Zhang, Y. Ablation performance of supersonic atmosphere plasma sprayed tungsten coating under oxyacetylene torch and plasma torch. Vacuum 2017, 143, 262-70.
25. Zha, B. L.; Su, Q. D.; Shi, Y. A.; Wang, J. J.; He, Q. Study on plasma ablation behavior of C/C composite materials under particle erosion. IOP. Conf. Ser. Mater. Sci. Eng. 2018, 423, 012094.
26. Yi, Z.; Ran, L.; Yi, M. Differences in microstructure and properties of C/C composites brazed with Ag-Cu-Ti and Ni-Cr-P-Ti pasty brazing filler. Vacuum 2019, 168, 108804.
27. Yuan, W.; Yu, N.; Li, L.; Fang, Y. Heat transfer analysis in multi-layered materials with interfacial thermal resistance. Compos. Struct. 2022, 293, 115728.
28. Huang, H. C.; Usmani, A. S. Introduction. In: Finite element analysis for heat transfer. London: Springer; 1994. p. 1-5.
29. Bergheau, J. M.; Fortunier, R. Finite element simulation of heat transfer. John Wiley & Sons: 2013.
30. Hu, M.; Yang, Z. Perspective on multi-scale simulation of thermal transport in solids and interfaces. Phys. Chem. Chem. Phys. 2021, 23, 1785-801.
31. Ma, T.; Chakraborty, P.; Guo, X.; Cao, L.; Wang, Y. First-principles modeling of thermal transport in materials: achievements, opportunities, and challenges. Int. J. Thermophys. 2020, 41, 2583.
32. Łach, Ł.; Svyetlichnyy, D. Advances in numerical modeling for heat transfer and thermal management: a review of computational approaches and environmental impacts. Energies 2025, 18, 1302.
33. Yao, H.; Gao, Y.; Liu, Y. FEA-Net: A physics-guided data-driven model for efficient mechanical response prediction. Comput. Methods. Appl. Mech. Eng. 2020, 363, 112892.
34. Zhu, C.; Bamidele, E. A.; Shen, X.; Zhu, G.; Li, B. Machine learning aided design and optimization of thermal metamaterials. Chem. Rev. 2024, 124, 4258-331.
35. de Pablo, J. J.; Jackson, N. E.; Webb, M. A.; et al. New frontiers for the materials genome initiative. npj. Comput. Mater. 2019, 5, 173.
36. Pollice, R.; Dos Passos Gomes, G.; Aldeghi, M.; et al. Data-driven strategies for accelerated materials design. Acc. Chem. Res. 2021, 54, 849-60.
37. Jha, D.; Ward, L.; Paul, A.; et al. ElemNet: deep learning the chemistry of materials from only elemental composition. Sci. Rep. 2018, 8, 17593.
38. Chen, Q.; Jia, R.; Pang, S. Deep long short-term memory neural network for accelerated elastoplastic analysis of heterogeneous materials: an integrated data-driven surrogate approach. Compos. Struct. 2021, 264, 113688.
39. Sun, W.; Bartel, C. J.; Arca, E.; et al. A map of the inorganic ternary metal nitrides. Nat. Mater. 2019, 18, 732-9.
40. Liu, B.; Wang, D.; Avdeev, M.; Shi, S.; Yang, J.; Zhang, W. High-throughput computational screening of Li-containing fluorides for battery cathode coatings. ACS. Sustainable. Chem. Eng. 2020, 8, 948-57.
41. Hautier, G.; Jain, A.; Chen, H.; Moore, C.; Ong, S. P.; Ceder, G. Novel mixed polyanions lithium-ion battery cathode materials predicted by high-throughput ab initio computations. J. Mater. Chem. 2011, 21, 17147.
42. Mounet, N.; Gibertini, M.; Schwaller, P.; et al. Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nat. Nanotechnol. 2018, 13, 246-52.
43. Huang, W.; Martin, P.; Zhuang, H. L. Machine-learning phase prediction of high-entropy alloys. Acta. Mater. 2019, 169, 225-36.
44. Islam, N.; Huang, W.; Zhuang, H. L. Machine learning for phase selection in multi-principal element alloys. Comput. Mater. Sci. 2018, 150, 230-5.
45. Shin, S.; Ko, B.; So, H. Noncontact thermal mapping method based on local temperature data using deep neural network regression. Int. J. Heat. Mass. Transfer. 2022, 183, 122236.
46. Ouyang, R.; Curtarolo, S.; Ahmetcik, E.; Scheffler, M.; Ghiringhelli, L. M. SISSO: a compressed-sensing method for identifying the best low-dimensional descriptor in an immensity of offered candidates. Phys. Rev. Mater. 2018, 2, 083802.
47. Bartel, C. J.; Sutton, C.; Goldsmith, B. R.; et al. New tolerance factor to predict the stability of perovskite oxides and halides. Sci. Adv. 2019, 5, eaav0693.
48. Liu, X.; Guo, Y.; Liu, W.; Zeng, L. Numerical simulation research on three dimensional ablative thermal response of charring ablators. J. Astronaut. 2016, 37, 1150-6. (in Chinese).
49. Dewey, W. C. Arrhenius relationships from the molecule and cell to the clinic. Int. J. Hyperthermia. 1994, 10, 457-83.
50. Peleg, M.; Normand, M. D.; Corradini, M. G. The Arrhenius equation revisited. Crit. Rev. Food. Sci. Nutr. 2012, 52, 830-51.
51. Appleton, J. P.; Bray, K. N. C. The conservation equations for a non-equilibrium plasma. J. Fluid. Mech. 1964, 20, 659-72.
52. Wheatcraft, S. W.; Meerschaert, M. M. Fractional conservation of mass. Adv. Water. Resources. 2008, 31, 1377-81.
53. Hubbert, M. K. Darcy’s law and the field equations of the flow of underground fluids. Trans. AIME. 1956, 207, 222-39.
54. Wang, J.; Xie, H.; Wang, Y.; Ouyang, R. Distilling accurate descriptors from multi-source experimental data for discovering highly active perovskite OER catalysts. J. Am. Chem. Soc. 2023, 145, 11457-65.
55. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436-44.
56. Rusk, N. Deep learning. Nat. Methods. 2016, 13, 35-35.
57. Minsky, M.; Papert, S. A. Perceptrons: an introduction to computational geometry. MIT Press: 2017.
58. Nwankpa, C.; Ijomah, W.; Gachagan, A.; Marshall, S. Activation functions: comparison of trends in practice and research for deep learning. arXiv2018, arXiv:1811.03378. Available online: https://doi.org/10.48550/arXiv.1811.03378. (accessed 11 Apr 2025)
59. Baydin, A. G.; Pearlmutter, B. A.; Radul, A. A.; Siskind, J. M. Automatic differentiation in machine learning: a survey. arXiv2015, arXiv:1502.05767. Available online: https://doi.org/10.48550/arXiv.1502.05767. (accessed 11 Apr 2025)
60. Agrawal, A.; Choudhary, A. Deep materials informatics: applications of deep learning in materials science. MRS. Commun. 2019, 9, 779-92.
61. Permann, C. J.; Gaston, D. R.; Andrš, D.; et al. MOOSE: enabling massively parallel multiphysics simulation. SoftwareX 2020, 11, 100430.
62. Zhang, C.; Liu, X.; Chen, J.; Hu, X.; Guo, Y.; Cui, P. Study on uncertainty propagation analysis method in ablative thermal response calculation. J. Astronautics. 2020, 41, 1401-9. (in Chinese).
63. Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B. 1996, 58, 267-88.
64. Ranstam, J.; Cook, J. A. LASSO regression. Br. J. Surg. 2018, 105, 1348.
65. Zou, H. The adaptive lasso and its oracle properties. J. Am. Stat. Assoc. 2006, 101, 1418-29.
66. Ye, S.; Senftle, T. P.; Li, M. Operator-induced structural variable selection for identifying materials genes. J. Am. Stat. Assoc. 2024, 119, 81-94.
67. Sandberg, J.; Voigtmann, T.; Devijver, E.; Jakse, N. Feature selection for high-dimensional neural network potentials with the adaptive group lasso. Mach. Learn. Sci. Technol. 2024, 5, 025043.
68. Wang, P.; Zhao, S.; Zhou, C.; et al. Simple formula learned via machine learning for creep rupture life prediction of high-temperature titanium alloys. J. Mater. Inf. 2024, 4, 24.
Comments
Comments must be written in English. Spam, offensive content, impersonation, and private information will not be permitted. If any comment is reported and identified as inappropriate content by OAE staff, the comment will be removed without notice. If you have any queries or need any help, please contact us at support@oaepublish.com.