REFERENCES

1. Harper G, Sommerville R, Kendrick E, et al. Recycling lithium-ion batteries from electric vehicles. Nature 2019;575:75-86.

2. Zubi G, Dufo-lópez R, Carvalho M, Pasaoglu G. The lithium-ion battery: state of the art and future perspectives. Renew Sust Energ Rev 2018;89:292-308.

3. Lu L, Han X, Li J, Hua J, Ouyang M. A review on the key issues for lithium-ion battery management in electric vehicles. J Power Sources 2013;226:272-88.

4. Yang S, Zhang C, Jiang J, Zhang W, Zhang L, Wang Y. Review on state-of-health of lithium-ion batteries: characterizations, estimations and applications. J Clean Prod 2021;314:128015.

5. Liu W, Placke T, Chau K. Overview of batteries and battery management for electric vehicles. Energy Rep 2022;8:4058-84.

6. Chen Y, Kang Y, Zhao Y, et al. A review of lithium-ion battery safety concerns: the issues, strategies, and testing standards. J Energy Chem 2021;59:83-99.

7. Xu B, Oudalov A, Ulbig A, Andersson G, Kirschen DS. Modeling of lithium-ion battery degradation for cell life assessment. IEEE Trans Smart Grid 2018;9:1131-40.

8. Li J, Adewuyi K, Lotfi N, Landers R, Park J. A single particle model with chemical/mechanical degradation physics for lithium ion battery state of health (SOH) estimation. Appl Energy 2018;212:1178-90.

9. Neupert S, Kowal J. Model-based state-of-charge and state-of-health estimation algorithms utilizing a new free lithium-ion battery cell dataset for benchmarking purposes. Batteries 2023;9:364.

10. Li J, Landers R, Park J. A comprehensive single-particle-degradation model for battery state-of-health prediction. J Power Sources 2020;456:227950.

11. Maheshwari A, Paterakis NG, Santarelli M, Gibescu M. Optimizing the operation of energy storage using a non-linear lithium-ion battery degradation model. Appl Energy 2020;261:114360.

12. Pender JP, Jha G, Youn DH, et al. Electrode degradation in lithium-ion batteries. ACS Nano 2020;14:1243-95.

13. Birkl CR, Roberts MR, Mcturk E, Bruce PG, Howey DA. Degradation diagnostics for lithium ion cells. J Power Sources 2017;341:373-86.

14. Zhang M, Yang D, Du J, et al. A review of SOH prediction of Li-ion batteries based on data-driven algorithms. Energies 2023;16:3167.

15. Lombardo T, Duquesnoy M, El-Bouysidy H, et al. Artificial intelligence applied to battery research: hype or reality? Chem Rev 2022;122:10899-969.

16. Deng Z, Lin X, Cai J, Hu X. Battery health estimation with degradation pattern recognition and transfer learning. J Power Sources 2022;525:231027.

17. Khaleghi S, Karimi D, Beheshti SH, et al. Online health diagnosis of lithium-ion batteries based on nonlinear autoregressive neural network. Appl Energy 2021;282:116159.

18. Hossain Lipu M, Ansari S, Miah MS, et al. Deep learning enabled state of charge, state of health and remaining useful life estimation for smart battery management system: methods, implementations, issues and prospects. J Energy Storage 2022;55:105752.

19. Jones PK, Stimming U, Lee AA. Impedance-based forecasting of lithium-ion battery performance amid uneven usage. Nat Commun 2022;13:4806.

20. Severson KA, Attia PM, Jin N, et al. Data-driven prediction of battery cycle life before capacity degradation. Nat Energy 2019;4:383-91.

21. Che Y, Hu X, Lin X, Guo J, Teodorescu R. Health prognostics for lithium-ion batteries: mechanisms, methods, and prospects. Energy Environ Sci 2023;16:338-71.

22. Li C, Xiao F, Fan Y. An approach to state of charge estimation of lithium-ion batteries based on recurrent neural networks with gated recurrent unit. Energies 2019;12:1592.

23. Xu Z, Wang J, Fan Q, Lund PD, Hong J. Improving the state of charge estimation of reused lithium-ion batteries by abating hysteresis using machine learning technique. J Energy Storage 2020;32:101678.

24. Peng K, Deng Z, Bao Z, Hu X. Data-driven battery capacity estimation based on partial discharging capacity curve for lithium-ion batteries. J Energy Storage 2023;67:107549.

25. Zheng L, Zhu J, Lu DD, Wang G, He T. Incremental capacity analysis and differential voltage analysis based state of charge and capacity estimation for lithium-ion batteries. Energy 2018;150:759-69.

26. Fei Z, Yang F, Tsui K, Li L, Zhang Z. Early prediction of battery lifetime via a machine learning based framework. Energy 2021;225:120205.

27. Shu X, Shen S, Shen J, et al. State of health prediction of lithium-ion batteries based on machine learning: advances and perspectives. iScience 2021;24:103265.

28. Choi W, Shin H, Kim JM, Choi J, Yoon W. Modeling and applications of electrochemical impedance spectroscopy (EIS) for lithium-ion batteries. J Electrochem Sci Technol 2020;11:1-13.

29. Meddings N, Heinrich M, Overney F, et al. Application of electrochemical impedance spectroscopy to commercial Li-ion cells: a review. J Power Sources 2020;480:228742.

30. Middlemiss LA, Rennie AJ, Sayers R, West AR. Characterisation of batteries by electrochemical impedance spectroscopy. Energy Rep 2020;6:232-41.

31. Juarez-robles D, Chen C, Barsukov Y, P. Mukherjee P. Impedance evolution characteristics in lithium-ion batteries. J Electrochem Soc 2017;164:A837-47.

32. Gaberšček M. Understanding Li-based battery materials via electrochemical impedance spectroscopy. Nat Commun 2021;12:6513.

33. Moradighadi N, Nesic S, Tribollet B. Identifying the dominant electrochemical reaction in electrochemical impedance spectroscopy. Electrochim Acta 2021;400:139460.

34. Li D, Yang D, Li L, Wang L, Wang K. Electrochemical impedance spectroscopy based on the state of health estimation for lithium-ion batteries. Energies 2022;15:6665.

35. Jiang B, Zhu J, Wang X, Wei X, Shang W, Dai H. A comparative study of different features extracted from electrochemical impedance spectroscopy in state of health estimation for lithium-ion batteries. Appl Energy 2022;322:119502.

36. Zhang Y, Tang Q, Zhang Y, Wang J, Stimming U, Lee AA. Identifying degradation patterns of lithium ion batteries from impedance spectroscopy using machine learning. Nat Commun 2020;11:1706.

37. Lecun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proc IEEE 1998;86:2278-324.

38. Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-propagating errors. Nature 1986;323:533-6.

39. Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput 1997;9:1735-80.

40. Graves A, Schmidhuber J. Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Netw 2005;18:602-10.

41. Koroma MS, Costa D, Philippot M, et al. Life cycle assessment of battery electric vehicles: implications of future electricity mix and different battery end-of-life management. Sci Total Environ 2022;831:154859.

42. Zhang Y, Tang Q, Zhang Y, et al. Dataset accompanying the paper: Identifying degradation patterns of lithium ion batteries from impedance spectroscopy using machine learning. Zenodo 2020.

Journal of Materials Informatics
ISSN 2770-372X (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/