1. Sha W, Guo Y, Yuan Q, et al. Artificial intelligence to power the future of materials science and engineering. Adv Intell Syst 2020;2:1900143.
2. Choudhary K, DeCost B, Chen C, et al. Recent advances and applications of deep learning methods in materials science. npj Comput Mater 2022;8:59.
3. Behler J, Parrinello M. Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys Rev Lett 2007;98:146401.
4. Schütt KT, Kindermans PJ, Sauceda HE, Chmiela S, Tkatchenko A, Müller KR. SchNet: a continuous-filter convolutional neural network for modeling quantum interactions. In: Proceedings of the 31st International Conference on Neural Information Processing Systems. Curran Associates Inc.; 2017. pp. 992-1002. Available from: https://dl.acm.org/doi/abs/10.5555/3294771.3294866. [Last accessed on 28 Mar 2024].
5. Xie T, Grossman JC. Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties. Phys Rev Lett 2018;120:145301.
6. Choudhary K, DeCost B. Atomistic line graph neural network for improved materials property predictions. npj Comput Mater 2021;7:185.
7. Chen C, Ye W, Zuo Y, Zheng C, Ong SP. Graph networks as a universal machine learning framework for molecules and crystals. Chem Mater 2019;31:3564-72.
8. Zuo Y, Qin M, Chen C, et al. Accelerating materials discovery with Bayesian optimization and graph deep learning. Mater Today 2021;51:126-35.
9. Conway BE, Tilak BV. Interfacial processes involving electrocatalytic evolution and oxidation of H2, and the role of chemisorbed H. Electrochim Acta 2002;47:3571-94.
10. Loffreda D. Theoretical insight of adsorption thermodynamics of multifunctional molecules on metal surfaces. Surf Sci 2006;600:2103-12.
11. Thomas N, Smidt T, Kearnes S, et al. Tensor field networks: rotation- and translation-equivariant neural networks for 3D point clouds. arXiv.[Preprint] 18 May 2018 [accessed on 2024 Mar 28]. Available from: https://arxiv.org/abs/1802.08219.
12. Batzner S, Musaelian A, Sun L, et al. E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials. Nat Commun 2022;13:2453.
13. Brandstetter J, Hesselink R, van der Pol E, Bekkers EJ, Welling M. Geometric and physical quantities improve E(3) equivariant message passing. arXiv.[Preprint] 26 Mar 2022 [accessed on 2024 Mar 28]. Available from: https://arxiv.org/abs/2110.02905.
14. Batatia I, Kovács DP, Simm GNC, Ortner C, Csányi G. MACE: higher order equivariant message passing neural networks for fast and accurate force fields. arXiv.[Preprint] 26 Jan 2023 [accessed on 2024 Mar 28]. Available from: https://arxiv.org/abs/2206.07697.
15. Musaelian A, Batzner S, Johansson A, et al. Learning local equivariant representations for large-scale atomistic dynamics. Nat Commun 2023;14:579.
16. Liao YL, Smidt T. Equiformer: equivariant graph attention transformer for 3D atomistic graphs. arXiv.[Preprint] 28 Feb 2023 [accessed on 2024 Mar 28]. Available from: https://arxiv.org/abs/2206.11990.
17. Zitnick CL, Das A, Kolluru A, et al. Spherical channels for modeling atomic interactions. arXiv.[Preprint] 13 Oct 2022 [accessed on 2024 Mar 28]. Available from: https://arxiv.org/abs/2206.14331.
18. Chanussot L, Das A, Goyal S, et al. Open catalyst 2020 (OC20) dataset and community challenges. ACS Catal 2021;11:6059-72.
19. Passaro S, Zitnick CL. Reducing SO(3) convolutions to SO(2) for efficient equivariant GNNs. arXiv.[Preprint] 14 Jun 2023 [accessed on 2024 Mar 28]. Available from: https://arxiv.org/abs/2302.03655.
20. Lan J, Palizhati A, Shuaibi M, et al. AdsorbML: a leap in efficiency for adsorption energy calculations using generalizable machine learning potentials. npj Comput Mater 2023;9:172.
21. Wang Z, Wang C, Zhao S, et al. Heterogeneous relational message passing networks for molecular dynamics simulations. npj Comput Mater 2022;8:53.
22. Zhong Y, Yu H, Su M, Gong X, Xiang H. Transferable equivariant graph neural networks for the Hamiltonians of molecules and solids. npj Comput Mater 2023;9:182.
23. Al Zoubi W, Assfour B, Allaf AW, Leoni S, Kang JH, Ko YG. Experimental and theoretical investigation of high-entropy-alloy/support as a catalyst for reduction reactions. J Energy Chem 2023;81:132-42.
24. Liu W, Tkatchenko A, Scheffler M. Modeling adsorption and reactions of organic molecules at metal surfaces. Acc Chem Res 2014;47:3369-77.
25. Shee J, Rudshteyn B, Arthur EJ, Zhang S, Reichman DR, Friesner RA. On achieving high accuracy in quantum chemical calculations of 3d transition metal-containing systems: a comparison of auxiliary-field quantum monte carlo with coupled cluster, density functional theory, and experiment for diatomic molecules. J Chem Theory Comput 2019;15:2346-58.
26. Ghanekar PG, Deshpande S, Greeley J. Adsorbate chemical environment-based machine learning framework for heterogeneous catalysis. Nat Commun 2022;13:5788.
27. Yang Z, Gao W. Applications of machine learning in alloy catalysts: rational selection and future development of descriptors. Adv Sci 2022;9:2106043.
28. George J, Hautier G. Chemist versus machine: traditional knowledge versus machine learning techniques. Trends Chem 2021;3:86-95.
29. Zebari RR, Abdulazeez AM, Zeebaree DQ, Zebari DA, Saeed JN. A comprehensive review of dimensionality reduction techniques for feature selection and feature extraction. J Appl Sci Technol Trends 2020;1:56-70.
30. Otchere DA, Ganat TOA, Gholami R, Ridha S. Application of supervised machine learning paradigms in the prediction of petroleum reservoir properties: comparative analysis of ANN and SVM models. J Petrol Sci Eng 2021;200:108182.
31. Huang X, Ma S, Zhao CY, Wang H, Ju S. Exploring high thermal conductivity polymers via interpretable machine learning with physical descriptors. npj Comput Mater 2023;9:191.
32. Li CN, Liang HP, Zhang X, Lin Z, Wei SH. Graph deep learning accelerated efficient crystal structure search and feature extraction. npj Comput Mater 2023;9:176.
33. Isayev O, Fourches D, Muratov EN, et al. Materials cartography: representing and mining materials space using structural and electronic fingerprints. Chem Mater 2015;27:735-43.
34. Ward L, Agrawal A, Choudhary A, Wolverton C. A general-purpose machine learning framework for predicting properties of inorganic materials. npj Comput Mater 2016;2:16028.
35. Schütt KT, Glawe H, Brockherde F, Sanna A, Müller KR, Gross EKU. How to represent crystal structures for machine learning: towards fast prediction of electronic properties. Phys Rev B 2014;89:205118.
36. Luo Y, Du X, Wu L, Wang Y, Li J, Ricardez-Sandoval L. Machine-learning-accelerated screening of double-atom/cluster electrocatalysts for the oxygen reduction reaction. J Phys Chem C 2023;127:20372-84.
37. Tran K, Ulissi ZW. Active learning across intermetallics to guide discovery of electrocatalysts for CO2 reduction and H2 evolution. Nat Catal 2018;1:696-703.
38. Calle-Vallejo F, Martínez JI, García-Lastra JM, Sautet P, Loffreda D. Fast prediction of adsorption properties for platinum nanocatalysts with generalized coordination numbers. Angew Chem Int Edit 2014;53:8316-9.
39. Cao S, Luo Y, Li T, Li J, Wu L, Liu G. Machine learning assisted screening of doped metals phosphides electrocatalyst towards efficient hydrogen evolution reaction. Mol Catal 2023;551:113625.
40. Calle-Vallejo F, Tymoczko J, Colic V, et al. Finding optimal surface sites on heterogeneous catalysts by counting nearest neighbors. Science 2015;350:185-9.
41. Zhou C, Chen C, Hu P, Wang H. Topology-determined structural genes enable data-driven discovery and intelligent design of potential metal oxides for inert C–H bond activation. J Am Chem Soc 2023;145:21897-903.
42. Li X, Chiong R, Hu Z, Page AJ. A graph neural network model with local environment pooling for predicting adsorption energies. Comput Theor Chem 2023;1226:114161.
43. Li Y, Zhu R, Wang Y, Feng L, Liu Y. Center-environment deep transfer machine learning across crystal structures: from spinel oxides to perovskite oxides. npj Comput Mater 2023;9:109.
44. Chen R, Liu F, Tang Y, et al. Combined first-principles and machine learning study of the initial growth of carbon nanomaterials on metal surfaces. Appl Surf Sci 2022;586:152762.
45. Yang T, Zhou J, Song TT, Shen L, Feng YP, Yang M. High-throughput identification of exfoliable two-dimensional materials with active basal planes for hydrogen evolution. ACS Energy Lett 2020;5:2313-21.
46. Zhou J, Shen L, Costa MD, et al. 2DMatPedia, an open computational database of two-dimensional materials from top-down and bottom-up approaches. Sci Data 2019;6:86.
47. Tran K, Palizhati A, Back S, Ulissi ZW. Dynamic workflows for routine materials discovery in surface science. J Chem Inf Model 2018;58:2392-400.
48. Tanemura M, Ogawa T, Ogita N. A new algorithm for three-dimensional voronoi tessellation. J Comput Phys 1983;51:191-207.
49. Saal JE, Kirklin S, Aykol M, Meredig B, Wolverton C. Materials design and discovery with high-throughput density functional theory: the open quantum materials database (OQMD). JOM 2013;65:1501-9.
50. Li Z, Wang S, Chin WS, Achenie LE, Xin H. High-throughput screening of bimetallic catalysts enabled by machine learning. J Mate Chem A 2017;5:24131-8.
51. Calle-Vallejo F, Loffreda D, Koper MTM, Sautet P. Introducing structural sensitivity into adsorption-energy scaling relations by means of coordination numbers. Nat Chem 2015;7:403-10.
52. Cao Z, Dan Y, Xiong Z, et al. Convolutional neural networks for crystal material property prediction using hybrid orbital-field matrix and magpie descriptors. Crystals 2019;9:191.
53. Friedman JH. Stochastic gradient boosting. Comput Stat Data An 2002;38:367-78.
54. Cover T, Hart P. Nearest neighbor pattern classification. IEEE Trans Inform Theory 1967;13:21-7.
55. Breiman L. Random forests. Mach Learn 2001;45:5-32.
56. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2016 Jun 27-30; Las Vegas, USA. IEEE; 2016. pp. 770–8.
57. Schütt KT, Sauceda HE, Kindermans PJ, Tkatchenko A, Müller KR. Schnet - a deep learning architecture for molecules and materials. J Chem Phys 2018;148:241722.
Comments
Comments must be written in English. Spam, offensive content, impersonation, and private information will not be permitted. If any comment is reported and identified as inappropriate content by OAE staff, the comment will be removed without notice. If you have any queries or need any help, please contact us at support@oaepublish.com.