1. Bartók AP, Csányi G. Gaussian approximation potentials: a brief tutorial introduction. Int J Quantum Chem 2015;115:1051-7.
2. Dragoni D, Daff TD, Csányi G, Marzari N. Achieving DFT accuracy with a machine-learning interatomic potential: thermomechanics and defects in bcc ferromagnetic iron. Phys Rev Mater 2018;2:013808.
3. Bartók AP, Payne MC, Kondor R, Csányi G. Gaussian approximation potentials: the accuracy of quantum mechanics, without the electrons. Phys Rev Lett 2010;104:136403.
4. Szlachta WJ, Bartók AP, Csányi G. Accuracy and transferability of Gaussian approximation potential models for tungsten. Phys Rev B 2014;90:104108.
5. Botu V, Ramprasad R. Learning scheme to predict atomic forces and accelerate materials simulations. Phys Rev B 2015;92:094306.
6. Li Z, Kermode JR, De Vita A. Molecular dynamics with on-the-fly machine learning of quantum-mechanical forces. Phys Rev Lett 2015;114:096405.
7. Novikov IS, Gubaev K, Podryabinkin EV, Shapeev AV. The MLIP package: moment tensor potentials with MPI and active learning. Mach Learn Sci Technol 2021;2:025002.
8. Shapeev AV. Moment tensor potentials: a class of systematically improvable interatomic potentials. Multiscale Model Simul 2016;14:1153-73.
9. Novikov IS, Suleimanov YV, Shapeev AV. Automated calculation of thermal rate coefficients using ring polymer molecular dynamics and machine-learning interatomic potentials with active learning. Phys Chem Chem Phys 2018;20:29503-12.
10. Zeng J, Zhang D, Lu D, et al. DeePMD-kit v2: a software package for deep potential models. J Chem Phys 2023;159:054801.
11. Li J, An Q. Quasiplastic deformation in shocked nanocrystalline boron carbide: grain boundary sliding and local amorphization. J Eur Ceram Soc 2023;43:208-16.
12. Pitike KC, Setyawan W. Accurate Fe-He machine learning potential for studying He effects in BCC-Fe. J Nucl Mater 2023;574:154183.
13. Zhai B, Wang HP. Accurate interatomic potential for the nucleation in liquid Ti-Al binary alloy developed by deep neural network learning method. Comput Mater Sci 2023;216:111843.
14. Lyakhov AO, Oganov AR, Stokes HT, Zhu Q. New developments in evolutionary structure prediction algorithm USPEX. Comput Phys Commun 2013;184:1172-82.
15. Zhu Q, Oganov AR, Glass CW, Stokes HT. Constrained evolutionary algorithm for structure prediction of molecular crystals: methodology and applications. Acta Crystal Sect B Struct Sci 2012;68:215-26.
16. Wang Y, Lv J, Zhu L, Ma Y. CALYPSO: a method for crystal structure prediction. Comput Phys Commun 2012;183:2063-70.
17. Yamashita T, Kanehira S, Sato N, et al. CrySPY: a crystal structure prediction tool accelerated by machine learning. Sci Technol Adv Mater Methods 2021;1:87-97.
18. Li C, Wang C, Sun M, et al. Correlated RNN framework to quickly generate molecules with desired properties for energetic materials in the low data regime. J Chem Inf Model 2022;62:4873-87.
19. Choudhary K, DeCost B, Chen C, et al. Recent advances and applications of deep learning methods in materials science. npj Comput Mater 2022;8:59.
20. Hong C, Choi JM, Jeong W, et al. Training machine-learning potentials for crystal structure prediction using disordered structures. Phys Rev B 2020;102:224104.
21. Chen WC, Schmidt JN, Yan D, Vohra YK, Chen CC. Machine learning and evolutionary prediction of superhard B-C-N compounds. npj Comput Mater 2021;7:114.
22. Chen WC, Vohra YK, Chen CC. Discovering superhard B-N-O compounds by iterative machine learning and evolutionary structure predictions. ACS Omega 2022;7:21035-42.
23. Kruglov IA, Yanilkin A, Oganov AR, Korotaev P. Phase diagram of uranium from ab initio calculations and machine learning. Phys Rev B 2019;100:174104.
24. Podryabinkin EV, Tikhonov EV, Shapeev AV, Oganov AR. Accelerating crystal structure prediction by machine-learning interatomic potentials with active learning. Phys Rev B 2019;99:064114.
25. Bereznikova LA, Propad YV, Kruglov IA. Nitrogen phase diagram at high P-T conditions by the T-USPEX method. J Phys Chem C 2023;127:5683-8.
26. Pakhnova M, Kruglov I, Yanilkin A, Oganov AR. Search for stable cocrystals of energetic materials using the evolutionary algorithm USPEX. Phys Chem Chem Phys 2020;22:16822-30.
27. Wang C, Ni Y, Zhang C, Xue X. Crystal structure prediction of 2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) by a tailor-made OPLS-AA force field. Cryst Growth Des 2021;21:3037-46.
28. Wespiser C, Mathieu D. Application of machine learning to the design of energetic materials: preliminary experience and comparison with alternative techniques. Prop Explos Pyrotech 2023;48:e202200264.
29. Zhang Y, Wang H, Chen W, et al. DP-GEN: A concurrent learning platform for the generation of reliable deep learning based potential energy models. Comput Phys Commun 2020;253:107206.
30. Vandermause J, Torrisi SB, Batzner S, et al. On-the-fly active learning of interpretable Bayesian force fields for atomistic rare events. npj Comput Mater 2020;6:20.
31. Venkata Viswanath J, Venugopal KJ, Srinivasa Rao NV, Venkataraman A. An overview on importance, synthetic strategies and studies of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (HNIW). Def Technol 2016;12:401-18.
32. Taylor JW, Crookes RJ. Vapour pressure and enthalpy of sublimation of 1,3,5,7-tetranitro-1,3,5,7-tetra-azacyclo-octane (HMX). J Chem Soc Faraday Trans 1 1976;72:723-9.
33. Tariq QuN, Tariq MuN, Dong WS, Manzoor S, Arshad F, Zhang JG. Comparative studies of synthesis, performance, and applications of recently developed CL-20 based co-crystals. Cryst Growth Des 2023;23:6974-87.
34. Yang Z, Li H, Zhou X, Zhang C, et al. Characterization and properties of a novel energetic-energetic cocrystal explosive composed of HNIW and BTF. Cryst Growth Des 2012;12:5155-8.
35. Xu H, Duan X, Li H, Pei C. A novel high-energetic and good-sensitive cocrystal composed of CL-20 and TATB by a rapid solvent/non-solvent method. RSC Adv 2015;5:95764-70.
36. Liu N, Duan B, Lu X, et al. Preparation of CL-20/DNDAP cocrystals by a rapid and continuous spray drying method: an alternative to cocrystal formation. Cryst Eng Comm 2018;20:2060-7.
37. Wang Y, Yang Z, Li H, et al. A novel cocrystal explosive of HNIW with good comprehensive properties. Prop Explos Pyrotech 2014;39:590-6.
38. Bolton O, Simke LR, Pagoria PF, Matzger AJ. High power explosive with good sensitivity: a 2:1 cocrystal of CL-20:HMX. Cryst Growth Des 2012;12:4311-4.
39. Corpinot MK, Bučar DK. A practical guide to the design of molecular crystals. Cryst Growth Des 2019;19:1426-53.
40. van Duin ACT, Dasgupta S, Lorant F, Goddard WA. ReaxFF: A reactive force field for hydrocarbons. J Phys Chem A 2001;105:9396-409.
41. Senftle TP, Hong S, Islam MM, et al. The ReaxFF reactive force-field: development, applications and future directions. npj Comput Mater 2016;2:15011.
42. Han Y, Jiang D, Zhang J, Li W, Gan Z, Gu J. Development, applications and challenges of ReaxFF reactive force field in molecular simulations. Front Chem Sci Eng 2016;10:16-38.
43. Chenoweth K, van Duin ACT, Goddard WA. ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation. J Phys Chem A 2008;112:1040-53.
44. Guo F, Zhang H, Hu HQ, Cheng XL. Effects of hydrogen bonds on solid state TATB, RDX, and DATB under high pressures. Chin Phys B 2014;23:046501.
45. Liu J, Li X, Guo L, et al. Reaction analysis and visualization of ReaxFF molecular dynamics simulations. J Mol Graphics Modell 2014;53:13-22.
46. Zhou T, Song H, Liu Y, Huang F. Shock initiated thermal and chemical responses of HMX crystal from ReaxFF molecular dynamics simulation. Phys Chem Chem Phys 2014;16:13914-31.
47. Huang X, Guo F, Yao K, et al. Anisotropic hydrogen bond structures and orientation dependence of shock sensitivity in crystalline 1,3,5-tri-amino-2,4,6-tri-nitrobenzene (TATB). Phys Chem Chem Phys 2020;22:11956-66.
48. Daksha CM, Yeon J, Chowdhury SC, Gillespie JW Jr. Automated ReaxFF parametrization using machine learning. Comput Mater Sci 2021;187:110107.
49. Bu Y, Guo F, Li K, et al. High-temperature pyrolysis behavior and structural evolution mechanism of graphene oxide: a ReaxFF molecular dynamics simulation. Appl Surf Sci 2022;593:153451.
50. Jiang J, Wang HR, Zhao FQ, Xu SY, Ju XH. Decomposition mechanism of 1,3,5-trinitro-2,4,6-trinitroaminobenzene under thermal and shock stimuli using ReaxFF molecular dynamics simulations. Phys Chem Chem Phys 2023;25:3799-805.
51. Feng S, Guo F, Yuan C, et al. Effect of neutron irradiation on structure and decomposition of -RDX: a ReaxFF molecular dynamics study. Comput Theor Chem 2023;1219:113965.
52. Xue LY, Guo F, Wen YS, et al. ReaxFF-MPNN machine learning potential: a combination of reactive force field and message passing neural networks. Phys Chem Chem Phys 2021;23:19457-64.
53. Guo F, Wen YS, Feng SQ, et al. Intelligent-ReaxFF: evaluating the reactive force field parameters with machine learning. Comput Mater Sci 2020;172:109393.
54. Friederich P, Häse F, Proppe J, Aspuru-Guzik A. Machine-learned potentials for next-generation matter simulations. Nat Mater 2021;20:750-61.
55. Schütt KT, Sauceda HE, Kindermans PJ, Tkatchenko A, Müller KR. SchNet - A deep learning architecture for molecules and materials. J Chem Phys 2018;148:241722.
56. Yoo P, Sakano M, Desai S, Islam MM, Liao P, Strachan A. Neural network reactive force field for C, H, N, and O systems. npj Comput Mater 2021;7:9.
57. Rappe AK, Goddard WA III. Charge equilibration for molecular dynamics simulations. J Phys Chem 1991;95:3358-63.
58. Islam MM, Kolesov G, Verstraelen T, Kaxiras E, van Duin ACT. eReaxFF: a pseudoclassical treatment of explicit electrons within reactive force field simulations. J Chem Theory Comput 2016;12:3463-72.
59. Larsen AH, Mortensen JJ, Blomqvist J, et al. The atomic simulation environment - a Python library for working with atoms. J Phys: Condens Matter 2017;29:273002.
61. Sivaraman G, Krishnamoorthy AN, Baur M, et al. Machine-learned interatomic potentials by active learning: amorphous and liquid hafnium dioxide. npj Comput Mater 2020;6:104.
62. Shi B, Zhou Y, Fang D, et al. Estimating the performance of a material in its service space via Bayesian active learning: a case study of the damping capacity of Mg alloys. J Mater Inf 2022;2:8.
63. Landenberger KB, Matzger AJ. Cocrystals of 1,3,5,7-Tetranitro-1,3,5,7-tetrazacyclooctane (HMX). Cryst Growth Des 2012;12:3603-9.
64. Millar DIA, Maynard-Casely HE, Allan DR, et al. Crystal engineering of energetic materials: co-crystals of CL-20. Cryst Eng Comm 2012;14:3742-9.
65. Bidault X, Chaudhuri S. A flexible-molecule force field to model and study hexanitrohexaazaisowurtzitane (CL-20) - polymorphism under extreme conditions. RSC Adv 2019;9:39649-61.
66. Zhang XQ, Chen XR, Kaliamurthi S, Selvaraj G, Ji GF, Wei DQ. Initial decomposition of the co-crystal of CL-20/TNT: sensitivity decrease under shock loading. J Phys Chem C 2018;122:24270-8.
67. Zhang XQ, Yuan JN, Selvaraj G, Ji GF, Chen XR, Wei DQ. Towards the low-sensitive and high-energetic co-crystal explosive CL-20/TNT: from intermolecular interactions to structures and properties. Phys Chem Chem Phys 2018;20:17253-61.
68. Bolotina NB, Hardie MJ, Speer RL Jr, Pinkerton AA. Energetic materials: variable-temperature crystal structures of - and -HNIW polymorphs. J Appl Cryst 2004;37:808-14.
69. Cawkwell MJ, Zecevic M, Luscher DJ, Ramos KJ. Dependence of the elastic stiffness tensors of PETN, -RDX, -RDX, -RDX, -CL-20, DAAF, FOX-7, and -HMX on hydrostatic compression. Prop Explos Pyrotech 2022;47:e202100281.
70. Deschamps JR, Frisch M, Parrish D. Thermal expansion of HMX. J Chem Crystal 2011;41:966-70.
71. Eiland PF, Pepinsky R. The crystal structure of cyclotetramethylene tetranitramine. Z Krist Cryst Mater 1954;106:273-98.
72. Cady HH, Larson AC, Cromer DT. The crystal structure of -HMX and a refinement of the structure of -HMX. Acta Cryst 1963;16:617-23.
73. Oganov AR, Glass CW. Crystal structure prediction using ab initio evolutionary techniques: principles and applications. J Chem Phys 2006;124:244704.
74. Oganov AR, Lyakhov AO, Valle M. How evolutionary crystal structure prediction works - and why. Acc Chem Res 2011;44:227-37.
75. Gale JD, Raiteri P, van Duin ACT. A reactive force field for aqueous-calcium carbonate systems. Phys Chem Chem Phys 2011;13:16666-79.
76. Soler JM, Artacho E, Gale JD, et al. The SIESTA method for ab initio order-N materials simulation. J Phys Condens Matter 2002;14:2745.
77. Dion M, Rydberg H, Schröder E, Langreth DC, Lundqvist BI. Van der Waals density functional for general geometries. Phys Rev Lett 2004;92:246401.
78. Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 1996;54:11169-86.
79. Gavezzotti A, Presti LL. Building blocks of crystal engineering: a large-database study of the intermolecular approach between C-H donor groups and O, N, Cl, or F acceptors in organic crystals. Cryst Growth Des 2016;16:2952-62.
Comments
Comments must be written in English. Spam, offensive content, impersonation, and private information will not be permitted. If any comment is reported and identified as inappropriate content by OAE staff, the comment will be removed without notice. If you have any queries or need any help, please contact us at support@oaepublish.com.