REFERENCES

1. Galloway JN, Townsend AR, Erisman JW, et al. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 2008;320:889-92.

2. Klerke A, Christensen CH, Nørskov JK, Vegge T. Ammonia for hydrogen storage: challenges and opportunities. J Mater Chem 2008;18:2304-10.

3. Guo J, Chen P. Catalyst: NH3 as an energy carrier. Chem 2017;3:709-12.

4. Gao S, Liu X, Wang Z, et al. Spin regulation for efficient electrocatalytic N2 reduction over diatomic Fe-Mo catalyst. J Colloid Interface Sci 2023;630:215-23.

5. Zhang G, Zhang X, Meng Y, Pan G, Ni Z, Xia S. Layered double hydroxides-based photocatalysts and visible-light driven photodegradation of organic pollutants: a review. Chem Eng J 2020;392:123684.

6. Chen JG, Crooks RM, Seefeldt LC, et al. Beyond fossil fuel-driven nitrogen transformations. Science 2018;360:eaar6611.

7. Yang X, Nash J, Anibal J, et al. Mechanistic insights into electrochemical nitrogen reduction reaction on vanadium nitride nanoparticles. J Am Chem Soc 2018;140:13387-91.

8. Gao Y, Zhuo H, Cao Y, et al. A theoretical study of electrocatalytic ammonia synthesis on single metal atom/MXene. Chinese J Catal 2019;40:152-9.

9. Wu J, Li JH, Yu YX. Single Nb or W atom-embedded BP monolayers as highly selective and stable electrocatalysts for nitrogen fixation with low-onset potentials. ACS Appl Mater Interfaces 2021;13:10026-36.

10. Du P, Huang Y, Zhu G, et al. Nitrogen reduction reaction on single cluster catalysts of defective PC6-trimeric or tetrameric transition metal. Phys Chem Chem Phys 2022;24:2219-26.

11. Andersen SZ, Čolić V, Yang S, et al. A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements. Nature 2019;570:504-8.

12. Zhang L, Meng Y, Shen H, et al. High-efficiency photocatalytic ammonia synthesis by facet orientation-supported heterojunction Cu2O@BiOCl[100] boosted by double built-in electric fields. Inorg Chem 2022;61:6045-55.

13. Li L, Tang C, Yao D, Zheng Y, Qiao SZ. Electrochemical nitrogen reduction: identification and elimination of contamination in electrolyte. ACS Energy Lett 2019;4:2111-6.

14. Hao YC, Guo Y, Chen LW, et al. Promoting nitrogen electroreduction to ammonia with bismuth nanocrystals and potassium cations in water. Nat Catal 2019;2:448-56.

15. Singh AR, Rohr BA, Statt MJ, Schwalbe JA, Cargnello M, Nørskov JK. Strategies toward selective electrochemical ammonia synthesis. ACS Catal 2019;9:8316-24.

16. Martín AJ, Shinagawa T, Pérez-ramírez J. Electrocatalytic reduction of nitrogen: from haber-bosch to ammonia artificial leaf. Chem 2019;5:263-83.

17. Han B, Meng H, Li F, Zhao J. Fe3 cluster anchored on the C2N monolayer for efficient electrochemical nitrogen fixation. Catalysts 2020;10:974.

18. Yu L, Li F. Pt2 dimer anchored vertically in defective BN monolayer as an efficient catalyst for N2 reduction: a DFT study. Catalysts 2022;12:1387.

19. Geng Z, Liu Y, Kong X, et al. Achieving a record-high yield rate of 120.9 $$ \mu \mathrm{g}_{\mathrm{NH}_{3}} \cdot \mathrm{mg}_{\text {cat.}}{}^{-1} \cdot \mathrm{h}^{-1} $$ for N2 electrochemical reduction over Ru single-atom catalysts. Adv Mater 2018;30:1803498.

20. Tao H, Choi C, Ding LX, et al. Nitrogen fixation by Ru single-atom electrocatalytic reduction. Chem 2019;5:204-14.

21. Han Z, Huang S, Zhang J, et al. Single Ru-N4 site-embedded porous carbons for electrocatalytic nitrogen reduction. ACS Appl Mater Interfaces 2023;15:13025-32.

22. Nørskov JK, Bligaard T, Hvolbaek B, Abild-Pedersen F, Chorkendorff I, Christensen CH. The nature of the active site in heterogeneous metal catalysis. Chem Soc Rev 2008;37:2163-71.

23. Azofra LM, Li N, MacFarlane DR, Sun C. Promising prospects for 2D d2-d4 M3C2 transition metal carbides (MXenes) in N2 capture and conversion into ammonia. Energy Environ Sci 2016;9:2545-9.

24. Choi C, Back S, Kim NY, Lim J, Kim YH, Jung Y. Suppression of hydrogen evolution reaction in electrochemical N2 reduction using single-atom catalysts: a computational guideline. ACS Catal 2018;8:7517-25.

25. Skúlason E, Bligaard T, Gudmundsdóttir S, et al. A theoretical evaluation of possible transition metal electro-catalysts for N2 reduction. Phys Chem Chem Phys 2012;14:1235-45.

26. Liu L, Corma A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem Rev 2018;118:4981-5079.

27. Su P, Pei W, Wang X, et al. Exceptional electrochemical HER performance with enhanced electron transfer between Ru nanoparticles and single atoms dispersed on a carbon substrate. Angew Chem Int Ed Engl 2021;60:16044-50.

28. Yang XF, Wang A, Qiao B, Li J, Liu J, Zhang T. Single-atom catalysts: a new frontier in heterogeneous catalysis. Acc Chem Res 2013;46:1740-8.

29. Lv X, Wei W, Wang H, Huang B, Dai Y. Holey graphitic carbon nitride (g-CN) supported bifunctional single atom electrocatalysts for highly efficient overall water splitting. Appl Catal B Environ 2020;264:118521.

30. Zhao J, Chen Z. Single Mo atom supported on defective boron nitride monolayer as an efficient electrocatalyst for nitrogen fixation: a computational study. J Am Chem Soc 2017;139:12480-7.

31. Zhao J, Zhao J, Cai Q. Single transition metal atom embedded into a MoS2 nanosheet as a promising catalyst for electrochemical ammonia synthesis. Phys Chem Chem Phys 2018;20:9248-55.

32. Chen Z, Zhao J, Cabrera CR, Chen Z. Computational screening of efficient single-atom catalysts based on graphitic carbon nitride (g-C3N4) for nitrogen electroreduction. Small Methods 2019;3:1800368.

33. He T, Matta SK, Will G, Du A. Transition-metal single atoms anchored on graphdiyne as high-efficiency electrocatalysts for water splitting and oxygen reduction. Small Methods 2019;3:1800419.

34. Liu Y, Xu Q, Fan X, et al. Electrochemical reduction of N2 to ammonia on Co single atom embedded N-doped porous carbon under ambient conditions. J Mater Chem A 2019;7:26358-63.

35. Wang S, Wei W, Lv X, Huang B, Dai Y. W supported on g-CN manifests high activity and selectivity for N2 electroreduction to NH3. J Mater Chem A 2020;8:1378-85.

36. Yu X, Pei W, Xu W, Zhao Y, Su Y, Zhao J. Core-packing-related vibrational properties of thiol-protected gold nanoclusters and their excited-state behavior. Inorg Chem 2023;62:20450-7.

37. Zhao J, Du Q, Zhou S, Kumar V. Endohedrally doped cage clusters. Chem Rev 2020;120:9021-163.

38. Yu X, Sun Y, Xu W, et al. Tuning photoelectron dynamic behavior of thiolate-protected MAu24 nanoclusters via heteroatom substitution. Nanoscale Horiz 2022;7:1192-200.

39. Yan H, Lin Y, Wu H, et al. Bottom-up precise synthesis of stable platinum dimers on graphene. Nat Commun 2017;8:1070.

40. Li G, Li Y, Liu H, Guo Y, Li Y, Zhu D. Architecture of graphdiyne nanoscale films. Chem Commun 2010;46:3256-8.

41. Tian S, Fu Q, Chen W, et al. Carbon nitride supported Fe2 cluster catalysts with superior performance for alkene epoxidation. Nat Commun 2018;9:2353.

42. Ji S, Chen Y, Fu Q, et al. Confined pyrolysis within metal-organic frameworks to form uniform Ru3 clusters for efficient oxidation of alcohols. J Am Chem Soc 2017;139:9795-8.

43. Pei W, Hou L, Yu X, et al. Graphitic carbon nitride supported trimeric metal clusters as electrocatalysts for N2 reduction reaction. J Catal 2024;429:115232.

44. Li Y, Zhang Q, Li C, et al. Atomically dispersed metal dimer species with selective catalytic activity for nitrogen electrochemical reduction. J Mater Chem A 2019;7:22242-7.

45. Li H, Zhao Z, Cai Q, Yin L, Zhao J. Nitrogen electroreduction performance of transition metal dimers embedded into N-doped graphene: a theoretical prediction. J Mater Chem A 2020;8:4533-43.

46. Zheng G, Li L, Tian Z, Zhang X, Chen L. Heterogeneous single-cluster catalysts (Mn3, Fe3, Co3, and Mo3) supported on nitrogen-doped graphene for robust electrochemical nitrogen reduction. J Energy Chem 2021;54:612-9.

47. Cui C, Zhang H, Luo Z. Nitrogen reduction reaction on small iron clusters supported by N-doped graphene: a theoretical study of the atomically precise active-site mechanism. Nano Res 2020;13:2280-8.

48. Li L, Xu L. Design of a graphene nitrene two-dimensional catalyst providing a well-defined site accommodating up to three metals, with application to N2 reduction electrocatalysis. Chem Commun 2020;56:8960-3.

49. Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals. Phys Rev B Condens Matter 1993;47:558-61.

50. Kresse G, Hafner J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys Rev B Condens Matter 1994;49:14251-69.

51. Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 1999;59:1758.

52. Blöchl PE. Projector augmented-wave method. Phys Rev B Condens Matter 1994;50:17953-79.

53. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett 1996;77:3865.

54. Tian J, Hou L, Xia W, et al. Solar driven CO2 hydrogenation to HCOOH on (TiO2)n (n = 1-6) atomic clusters. Phys Chem Chem Phys 2023;25:28533-40.

55. Grimme S, Antony J, Ehrlich S, Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 2010;132:154104.

56. Grimme S, Ehrlich S, Goerigk L. Effect of the damping function in dispersion corrected density functional theory. J Comput Chem 2011;32:1456-65.

57. Monkhorst HJ, Pack JD. Special points for Brillouin-zone integrations. Phys Rev B 1976;13:5188.

58. Peterson AA, Abild-Pedersen F, Studt F, Rossmeisl J, Nørskov JK. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ Sci 2010;3:1311-5.

59. Peterson AA, Nørskov JK. Activity descriptors for CO2 electroreduction to methane on transition-metal catalysts. J Phys Chem Lett 2012;3:251-8.

60. Nørskov JK, Rossmeisl J, Logadottir A, et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J Phys Chem B 2004;108:17886-92.

61. Lv X, Wei W, Huang B, Dai Y, Frauenheim T. High-throughput screening of synergistic transition metal dual-atom catalysts for efficient nitrogen fixation. Nano Lett 2021;21:1871-8.

62. Zhou Y, Wang J, Liang L, et al. Unraveling the size-dependent effect of Ru-based catalysts on ammonia synthesis at mild conditions. J Catal 2021;404:501-11.

63. Wang S, Shi L, Bai X, Li Q, Ling C, Wang J. Highly efficient photo-/electrocatalytic reduction of nitrogen into ammonia by dual-metal sites. ACS Cent Sci 2020;6:1762-71.

64. Ling C, Niu X, Li Q, Du A, Wang J. Metal-free single atom catalyst for N2 fixation driven by visible light. J Am Chem Soc 2018;140:14161-8.

65. Hu R, Li Y, Zeng Q, Wang F, Shang J. Bimetallic pairs supported on graphene as efficient electrocatalysts for nitrogen fixation: search for the optimal coordination atoms. ChemSusChem 2020;13:3636-44.

66. Pei W, Zhou S, Zhao J, Du Y, Dou SX. Optimization of photocarrier dynamics and activity in phosphorene with intrinsic defects for nitrogen fixation. J Mater Chem A 2020;8:20570-80.

67. Janesko BG. Replacing hybrid density functional theory: motivation and recent advances. Chem Soc Rev 2021;50:8470-95.

68. Shinde R, Yamijala SSRKC, Wong BM. Improved band gaps and structural properties from Wannier-Fermi-Löwdin self-interaction corrections for periodic systems. J Phys Condens Matter 2021;33:115501.

69. Back S, Lim J, Kim NY, Kim YH, Jung Y. Single-atom catalysts for CO2 electroreduction with significant activity and selectivity improvements. Chem Sci 2017;8:1090-6.

70. Li H, Pei W, Yang X, Zhou S, Zhao J. Pt overlayer for direct oxidation of CH4 to CH3OH. Chinese Chem Lett 2023;34:108292.

71. Zhou S, Pei W, Du Q, Zhao J. Foreign atom encapsulated Au12 golden cages for catalysis of CO oxidation. Phys Chem Chem Phys 2019;21:10587-93.

72. Pei W, She J, Yu X, Zhou S, Zhao J. Atomically precise gold nanoclusters for CO oxidation: balancing activity and stability by ligand shedding. J Phys D Appl Phys 2023;56:445304.

73. Han B, Li F. Regulating the electrocatalytic performance for nitrogen reduction reaction by tuning the N contents in Fe3@NxC20-x (x = 0~4): a DFT exploration. J Mater Inf 2023;3:24.

74. Gu YT, Gu YM, Tao Q, Wang X, Zhu Q, Ma J. Machine learning for prediction of CO2/N2/H2O selective adsorption and separation in metal-zeolites. J Mater Inf 2023;3:19.

75. Hu Y, Chen J, Wei Z, He Q, Zhao Y. Recent advances and applications of machine learning in electrocatalysis. J Mater Inf 2023;3:18.

76. Sun Y, Pei W, Xie M, et al. Excitonic Au4Ru2(PPh3)2(SC2H4Ph)8 cluster for light-driven dinitrogen fixation. Chem Sci 2020;11:2440-7.

77. Zhou S, Pei W, Zhao Y, Yang X, Liu N, Zhao J. Low-dimensional non-metal catalysts: principles for regulating p-orbital-dominated reactivity. npj Comput Mater 2021;7:186.

Journal of Materials Informatics
ISSN 2770-372X (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/