REFERENCES
1. Foster SL, Bakovic SIP, Duda RD, et al. Catalysts for nitrogen reduction to ammonia. Nat Catal 2018;1:490-500.
2. Wang S, Ichihara F, Pang H, Chen J, Ye J. Nitrogen fixation reaction derived from nanostructured catalytic materials. Adv Funct Mater 2018;28:1803309.
3. Liu H. Ammonia synthesis catalyst 100 years: practice, enlightenment and challenge. Chinese J Catal 2014;35:1619-40.
4. Guo X, Huang S. Tuning nitrogen reduction reaction activity via controllable Fe magnetic moment: a computational study of single Fe atom supported on defective graphene. Electrochim Acta 2018;284:392-9.
5. Chen ZW, Lang XY, Jiang Q. Discovery of cobweb-like MoC6 and its application for nitrogen fixation. J Mater Chem A 2018;6:9623-8.
7. Bai J, Huang H, Li FM, et al. Glycerol oxidation assisted electrocatalytic nitrogen reduction: ammonia and glyceraldehyde co-production on bimetallic RhCu ultrathin nanoflake nanoaggregates. J Mater Chem A 2019;7:21149-56.
8. Wang F, Mao J. Effect of N-doping on graphene: NRR activity and N-source. Diam Relat Mater 2021;118:108494.
9. Choi C, Back S, Kim NY, Lim J, Kim YH, Jung Y. Suppression of hydrogen evolution reaction in electrochemical N2 reduction using single-atom catalysts: a computational guideline. ACS Catal 2018;8:7517-25.
10. Liu Q, Xu T, Luo Y, et al. Recent advances in strategies for highly selective electrocatalytic N2 reduction toward ambient NH3 synthesis. Curr Opin Electrochem 2021;29:100766.
11. Li M, Cui Y, Zhang X, Luo Y, Dai Y, Huang Y. Screening a suitable Mo form supported on graphdiyne for effectively electrocatalytic N2 reduction reaction: from atomic catalyst to cluster catalyst. J Phys Chem Lett 2020;11:8128-37.
12. Chen H, Xu Z, Sun S, et al. Plasma-etched Ti2O3 with oxygen vacancies for enhanced NH3 electrosynthesis and Zn-N2 batteries. Inorg Chem Front 2022;9:4608-13.
13. Chen H, Liang J, Dong K, et al. Ambient electrochemical N2-to-NH3 conversion catalyzed by TiO2 decorated juncus effusus-derived carbon microtubes. Inorg Chem Front 2022;9:1514-9.
14. Qiao B, Wang A, Yang X, et al. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat Chem 2011;3:634-41.
15. Zhang W, Fu Q, Luo Q, Sheng L, Yang J. Understanding single-atom catalysis in view of theory. JACS Au 2021;1:2130-45.
16. Wang Z, Yu Z, Zhao J. Computational screening of a single transition metal atom supported on the C2N monolayer for electrochemical ammonia synthesis. Phys Chem Chem Phys 2018;20:12835-44.
17. Chen Z, Zhao J, Cabrera CR, Chen Z. Computational screening of efficient single-atom catalysts based on graphitic carbon nitride (g-C3N4) for nitrogen electroreduction. Small Methods 2019;3:1800368.
18. Liu JC, Tang Y, Wang YG, Zhang T, Li J. Theoretical understanding of the stability of single-atom catalysts. Natl Sci Rev 2018;5:638-41.
19. Pan Y, Zhang C, Liu Z, Chen C, Li Y. Structural regulation with atomic-level precision: from single-atomic site to diatomic and atomic interface catalysis. Matter 2020;2:78-110.
20. Zou H, Arachchige LJ, Rong W, et al. Low-valence metal single atoms on graphdiyne promotes electrochemical nitrogen reduction via M-to-N2 π-backdonation. Adv Funct Mater 2022;32:2200333.
21. Long J, Fu X, Xiao J. The rational design of single-atom catalysts for electrochemical ammonia synthesis via a descriptor-based approach. J Mater Chem A 2020;8:17078-88.
22. Chen ZW, Yan JM, Jiang Q. Single or double: which is the altar of atomic catalysts for nitrogen reduction reaction? Small Methods 2019;3:1800291.
23. Zhang X, Chen A, Zhang Z, Zhou Z. Double-atom catalysts: transition metal dimer-anchored C2N monolayers as N2 fixation electrocatalysts. J Mater Chem A 2018;6:18599-604.
24. Wang YH, Dong JH, Tan Z, Wang XF, Song XZ. The journey of iron-based electrocatalytic materials for nitrogen reduction reaction: from current status to future prospects. J Mater Chem A 2023;11:11048-77.
25. Sathishkumar N, Chen HT. Regulating the coordination environment of single-atom catalysts anchored on thiophene linked porphyrin for an efficient nitrogen reduction reaction. ACS Appl Mater Interfaces 2023;15:15545-60.
26. Hou P, Huang Y, Ma F, et al. Screening of single-atom catalysts of transition metal supported on MoSe2 for high-efficiency nitrogen reduction reaction. Mol Catal 2023;537:112967.
27. Xu T, Liang J, Li S, et al. Recent advances in nonprecious metal oxide electrocatalysts and photocatalysts for N2 reduction reaction under ambient condition. Small Sci 2021;1:2000069.
28. Cheng H, Ding LX, Chen GF, Zhang L, Xue J, Wang H. Molybdenum carbide nanodots enable efficient electrocatalytic nitrogen fixation under ambient conditions. Adv Mater 2018;30:1803694.
29. Li R, Wang D. Superiority of dual-atom catalysts in electrocatalysis: one step further than single-atom catalysts. Adv Energy Mater 2022;12:2103564.
30. Yang W, Jia Z, Chen L, et al. Effects of intermetal distance on the electrochemistry-induced surface coverage of M-N-C dual-atom catalysts. Chem Commun 2023;59:10761-4.
31. Yang W, Jia Z, Zhou B, et al. Why is C–C coupling in CO2 reduction still difficult on dual-atom electrocatalysts? ACS Catal 2023;13:9695-705.
32. Chen Z, Liu C, Sun L, Wang T. Progress of experimental and computational catalyst design for electrochemical nitrogen fixation. ACS Catal 2022;12:8936-75.
33. Liu Y, Fan X, Bian W, et al. High-loading Fe1 sites on vanadium disulfides: a scalable and non-defect-stabilized single atom catalyst for electrochemical nitrogen reduction. J Mater Chem A 2022;10:21142-8.
34. Zhao X, Zhang X, Xue Z, Chen W, Zhou Z, Mu T. Fe nanodot-decorated MoS2 nanosheets on carbon cloth: an efficient and flexible electrode for ambient ammonia synthesis. J Mater Chem A 2019;7:27417-22.
35. Banerjee A. Computational screening of χ3 borophene based single-atom catalysts for N2 reduction. Catal Today 2023;418:114079.
36. Sahoo SK, Heske J, Antonietti M, Qin Q, Oschatz M, Kühne TD. Electrochemical N2 reduction to ammonia using single Au/Fe atoms supported on nitrogen-doped porous carbon. ACS Appl Energy Mater 2020;3:10061-9.
37. Zhang H, Cui C, Luo Z. MoS2-supported Fe2 clusters catalyzing nitrogen reduction reaction to produce ammonia. J Phys Chem C 2020;124:6260-6.
38. Yao X, Zhang Z, Chen L, Chen ZW, Zhu YF, Singh CV. Work function-tailored nitrogenase-like Fe double-atom catalysts on transition metal dichalcogenides for nitrogen fixation. ACS Sustainable Chem Eng 2023;11:4990-7.
39. Zhang Z, Huang X, Xu H. Anchoring an Fe dimer on nitrogen-doped graphene toward highly efficient electrocatalytic ammonia synthesis. ACS Appl Mater Interfaces 2021;13:43632-40.
40. Liu JC, Ma XL, Li Y, Wang YG, Xiao H, Li J. Heterogeneous Fe3 single-cluster catalyst for ammonia synthesis via an associative mechanism. Nat Commun 2018;9:1610.
41. Chen S, Gao Y, Wang W, Prezhdo OV, Xu L. Prediction of three-metal cluster catalysts on two-dimensional W2N3 support with integrated descriptors for electrocatalytic nitrogen reduction. ACS Nano 2023;17:1522-32.
42. Xie K, Wang F, Wei F, Zhao J, Lin S. Revealing the origin of nitrogen electroreduction activity of molybdenum disulfide supported iron atoms. J Phys Chem C 2022;126:5180-8.
43. Chen ZW, Chen LX, Jiang M, et al. A triple atom catalyst with ultrahigh loading potential for nitrogen electrochemical reduction. J Mater Chem A 2020;8:15086-93.
44. Dai T, Lang X, Wang Z, Wen Z, Jiang Q. Rational design of an Fe cluster catalyst for robust nitrogen activation. J Mater Chem A 2021;9:21219-27.
45. Lancaster KM, Roemelt M, Ettenhuber P, et al. X-ray emission spectroscopy evidences a central carbon in the nitrogenase iron-molybdenum cofactor. Science 2011;334:974-7.
46. Zhong Q, Niu K, Chen L, et al. Substrate-modulated synthesis of metal-organic hybrids by tunable multiple aryl-metal bonds. J Am Chem Soc 2022;144:8214-22.
47. Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B Condens Matter 1996;54:11169-86.
48. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett 1996;77:3865-8.
49. Bučko T, Hafner J, Lebègue S, Ángyán JG. Improved description of the structure of molecular and layered crystals: ab initio DFT calculations with van der Waals corrections. J Phys Chem A 2010;114:11814-24.
50. Wang M, Huang Y, Ma F, et al. Theoretical insights into the mechanism of nitrogen-to-ammonia electroreduction on TM/g-C9N10. Mol Catal 2023;547:113391.
52. Henkelman G, Arnaldsson A, Jónsson H. A fast and robust algorithm for Bader decomposition of charge density. Comput Mater Sci 2006;36:354-60.
53. Nørskov JK, Rossmeisl J, Logadottir A, et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J Phys Chem B 2004;108:17886-92.
54. Tian Y, Wang Y, Yan L, Zhao J, Su Z. Electrochemical reduction of carbon dioxide on the two-dimensional M3(Hexaiminotriphenylene)2 sheet: a computational study. Appl Surf Sci 2019;467-8:98-103.
55. Wang V, Xu N, Liu JC, Tang G, Geng WT. VASPKIT: a user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput Phys Commun 2021;267:108033.
56. Chen H, Handoko AD, Xiao J, et al. Catalytic effect on CO2 electroreduction by hydroxyl-terminated two-dimensional MXenes. ACS Appl Mater Interfaces 2019;11:36571-9.
57. Skúlason E, Bligaard T, Gudmundsdóttir S, et al. A theoretical evaluation of possible transition metal electro-catalysts for N2 reduction. Phys Chem Chem Phys 2012;14:1235-45.
58. Liu X, Li C, Ma P, Zhang W, Jia M, Song W. A first-principles study of transition metal clusters supported on graphene as electrocatalysts for N2 to NH3 reaction. Mater Today Commun 2023;35:106353.
59. Guo Z, Liu C, Sun C, Xu J, Li H, Wang T. Tuning the coordination environment of single-atom iron catalysts towards effective nitrogen reduction. ChemCatChem 2023;15:e202300669.
60. Wang S, Zhao T, Yan L. Tailoring of three-atom metal cluster catalysts for ammonia synthesis. Catalysts 2023;13:869.
61. Gao S, Liu X, Wang Z, et al. Spin regulation for efficient electrocatalytic N2 reduction over diatomic Fe-Mo catalyst. J Colloid Interface Sci 2023;630:215-23.
62. Mathew K, Sundararaman R, Letchworth-Weaver K, Arias TA, Hennig RG. Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways. J Chem Phys 2014;140:084106.
63. Yuan D, Wu D, Zhang J, et al. Effect of oxygen coordination on the electrocatalytic nitrogen fixation of a vanadium single-atom catalyst embedded in graphene. New J Chem 2022;46:22936-43.
64. Wang Y, Cheng W, Yuan P, et al. Boosting nitrogen reduction to ammonia on FeN4 sites by atomic spin regulation. Adv Sci 2021;8:2102915.