REFERENCES

1. Zhang J, Song B, Wei Q, Bourell D, Shi Y. A review of selective laser melting of aluminum alloys: Processing, microstructure, property and developing trends. J Mater Sci Technol 2019;35:270-84.

2. Ghio E, Cerri E. Additive manufacturing of AlSi10Mg and Ti6Al4V lightweight alloys via laser powder bed fusion: a review of heat treatments effects. Materials 2022;15:2047.

3. Kimura T, Nakamoto T, Ozaki T, Sugita K, Mizuno M, Araki H. Microstructural formation and characterization mechanisms of selective laser melted Al-Si-Mg alloys with increasing magnesium content. Mater Sci Eng A 2019;754:786-98.

4. Kimura T, Nakamoto T, Mizuno M, Araki H. Effect of silicon content on densification, mechanical and thermal properties of Al-xSi binary alloys fabricated using selective laser melting. Mater Sci Eng A 2017;682:593-602.

5. Suryawanshi J, Prashanth K, Scudino S, Eckert J, Prakash O, Ramamurty U. Simultaneous enhancements of strength and toughness in an Al-12Si alloy synthesized using selective laser melting. Acta Mater 2016;115:285-94.

6. Wang P, Lao C, Chen Z, et al. Microstructure and mechanical properties of Al-12Si and Al-3.5Cu-1.5Mg-1Si bimetal fabricated by selective laser melting. J Mater Sci Technol 2020;36:18-26.

7. Awd M, Siddique S, Walther F. Microstructural damage and fracture mechanisms of selective laser melted Al-Si alloys under fatigue loading. Theor Appl Fract Mech 2020;106:102483.

8. Cerri E, Ghio E, Bolelli G. Effect of the distance from build platform and post-heat treatment of AlSi10Mg alloy manufactured by single- and multi-laser selective laser melting. J Mater Eng Perform 2021;30:4981-92.

9. Chen B, Moon S, Yao X, et al. Strength and strain hardening of a selective laser melted AlSi10Mg alloy. Scr Mater 2017;141:45-9.

10. Larrosa N, Wang W, Read N, et al. Linking microstructure and processing defects to mechanical properties of selectively laser melted AlSi10Mg alloy. Theor Appl Fract Mech 2018;98:123-33.

11. Hwang WJ, Bang GB, Choa S. Effect of a stress relief heat treatment of AlSi7Mg and AlSi10Mg alloys on mechanical and electrical properties according to silicon precipitation. Met Mater Int 2022; doi: 10.1007/s12540-022-01304-7.

12. Denti L. Additive manufactured A357.0 samples using the laser powder bed fusion technique: shear and tensile performance. Metals 2018;8:670.

13. Yang KV, Rometsch P, Davies C, Huang A, Wu X. Effect of heat treatment on the microstructure and anisotropy in mechanical properties of A357 alloy produced by selective laser melting. Mater Des 2018;154:275-90.

14. Suzuki A, Miyasaka T, Takata N, Kobashi M, Kato M. Control of microstructural characteristics and mechanical properties of AlSi12 alloy by processing conditions of laser powder bed fusion. Addit Manuf 2021;48:102383.

15. Gheysen J, Marteleur M, van der Rest C, Simar A. Efficient optimization methodology for laser powder bed fusion parameters to manufacture dense and mechanically sound parts validated on AlSi12 alloy. Mater Des 2021;199:109433.

16. Mei J, Han Y, Zu G, et al. Achieving superior strength and ductility of AlSi10Mg alloy fabricated by selective laser melting with large laser power and high scanning speed. Acta Metall Sin 2022;35:1665-72.

17. Dai D, Gu D, Zhang H, et al. Influence of scan strategy and molten pool configuration on microstructures and tensile properties of selective laser melting additive manufactured aluminum based parts. Opt Laser Technol 2018;99:91-100.

18. Giovagnoli M, Silvi G, Merlin M, Di Giovanni MT. Optimisation of process parameters for an additively manufactured AlSi10Mg alloy: limitations of the energy density-based approach on porosity and mechanical properties estimation. Mater Sci Eng A 2021;802:140613.

19. Salandari-rabori A, Wang P, Dong Q, Fallah V. Enhancing as-built microstructural integrity and tensile properties in laser powder bed fusion of AlSi10Mg alloy using a comprehensive parameter optimization procedure. Mater Sci Eng A 2021;805:140620.

20. Wang C, Zhu J, Wang G, et al. Effect of building orientation and heat treatment on the anisotropic tensile properties of AlSi10Mg fabricated by selective laser melting. J Alloys Compd 2022;895:162665.

21. Li X, Yi D, Wu X, et al. Effect of construction angles on microstructure and mechanical properties of AlSi10Mg alloy fabricated by selective laser melting. J Alloys Compd 2021;881:160459.

22. Maconachie T, Leary M, Zhang J, et al. Effect of build orientation on the quasi-static and dynamic response of SLM AlSi10Mg. Mater Sci Eng A 2020;788:139445.

23. Gupta MK, Singla AK, Ji H, et al. Impact of layer rotation on micro-structure, grain size, surface integrity and mechanical behaviour of SLM Al-Si-10Mg alloy. J Mater Res Technol 2020;9:9506-22.

24. Yadav P, Rigo O, Arvieu C, Lacoste E. Microstructural and mechanical aspects of AlSi7Mg0.6 alloy related to scanning strategies in L-PBF. Int J Adv Manuf Technol 2022;120:6205-23.

25. Lu Z, Zhang L. Thermodynamic description of the quaternary Al-Si-Mg-Sc system and its application to the design of novel Sc-additional A356 alloys. Mater Des 2017;116:427-37.

26. Lu Z, Zhang L, Wang J, Yao Q, Rao G, Zhou H. Understanding of strengthening and toughening mechanisms for Sc-modified Al-Si-(Mg) series casting alloys designed by computational thermodynamics. J Alloys Compd 2019;805:415-25.

27. Liu G, Gao J, Che C, Lu Z, Yi W, Zhang L. Optimization of casting means and heat treatment routines for improving mechanical and corrosion resistance properties of A356-0.54Sc casting alloy. Mater Today Commun 2020;24:101227.

28. Gao J, Li Z. Current situation and prospect of computationally assisted design in high-performance additive manufactured aluminum alloys: a review. Acta Met Sin 2022;59:87-105.

29. Yi W, Liu G, Lu Z, Gao J, Zhang L. Efficient alloy design of Sr-modified A356 alloys driven by computational thermodynamics and machine learning. J Mater Sci Technol 2022;112:277-90.

30. Gao J, Zhong J, Liu G, et al. A machine learning accelerated distributed task management system (Malac-Distmas) and its application in high-throughput CALPHAD computation aiming at efficient alloy design. Adv Powder Mater 2022;1:100005.

31. Wei M, Tang Y, Zhang L, Sun W, Du Y. Phase-field simulation of microstructure evolution in industrial A2214 alloy during solidification. Metall and Mat Trans A 2015;46:3182-91.

32. Gao J, Malchère A, Yang S, et al. Dewetting of Ni silicide thin film on Si substrate: in-situ experimental study and phase-field modeling. Acta Mater 2022;223:117491.

33. Yang S, Zhong J, Wang J, Gao J, Li Q, Zhang L. A novel computational model for isotropic interfacial energies in multicomponent alloys and its coupling with phase-field model with finite interface dissipation. J Mater Sci Technol 2023;133:111-22.

34. Zhang J, Yuan W, Song B, et al. Towards understanding metallurgical defect formation of selective laser melted wrought aluminum alloys. Adv Powder Mater 2022;1:100035.

35. Yi W, Liu G, Gao J, Zhang L. Boosting for concept design of casting aluminum alloys driven by combining computational thermodynamics and machine learning techniques. J Mater Inf 2021;1:11.

36. Zhang S, Yi W, Zhong J, Gao J, Lu Z, Zhang L. Computer alloy design of Ti modified Al-Si-Mg-Sr casting alloys for achieving simultaneous enhancement in strength and ductility. Materials 2022;16:306.

37. Mondal B, Mukherjee T, Debroy T. Crack free metal printing using physics informed machine learning. Acta Mater 2022;226:117612.

38. Yu T, Mo X, Chen M, Yao C. Machine-learning-assisted microstructure-property linkages of carbon nanotube-reinforced aluminum matrix nanocomposites produced by laser powder bed fusion. Nanotechnol Rev 2021;10:1410-24.

39. He P, Liu Q, Kruzic JJ, Li X. Machine-learning assisted additive manufacturing of a TiCN reinforced AlSi10Mg composite with tailorable mechanical properties. Mater Lett 2022;307:131018.

40. Prashanth K, Scudino S, Klauss H, et al. Microstructure and mechanical properties of Al-12Si produced by selective laser melting: Effect of heat treatment. Mater Sci Eng A 2014;590:153-60.

41. Prashanth K, Scudino S, Eckert J. Tensile properties of Al-12Si fabricated via selective laser melting (SLM) at different temperatures. Technologies 2016;4:38.

42. Li X, Wang X, Saunders M, et al. A selective laser melting and solution heat treatment refined Al-12Si alloy with a controllable ultrafine eutectic microstructure and 25% tensile ductility. Acta Mater 2015;95:74-82.

43. Prashanth K, Scudino S, Eckert J. Defining the tensile properties of Al-12Si parts produced by selective laser melting. Acta Mater 2017;126:25-35.

44. Liu M, Wada T, Suzuki A, Takata N, Kobashi M, Kato M. Effect of annealing on anisotropic tensile properties of Al-12%Si alloy fabricated by laser powder bed fusion. Crystals 2020;10:1007.

45. Wang X, Zhang L, Fang M, Sercombe T. The effect of atmosphere on the structure and properties of a selective laser melted Al-12Si alloy. Mater Sci Eng A 2014;597:370-5.

46. Rashid R, Masood S, Ruan D, et al. Effect of energy per layer on the anisotropy of selective laser melted AlSi12 aluminium alloy. Addit Manuf 2018;22:426-39.

47. Zhang S, Ma P, Jia Y, et al. Microstructure and mechanical properties of Al-(12-20)Si Bi-material fabricated by selective laser melting. Materials 2019;12:2126.

48. Siddique S, Imran M, Wycisk E, Emmelmann C, Walther F. Influence of process-induced microstructure and imperfections on mechanical properties of AlSi12 processed by selective laser melting. J Mater Process Technol 2015;221:205-13.

49. Kimura T, Nakamoto T. Microstructures and mechanical properties of A356 (AlSi7Mg0.3) aluminum alloy fabricated by selective laser melting. Mater Des 2016;89:1294-301.

50. Rao H, Giet S, Yang K, Wu X, Davies CH. The influence of processing parameters on aluminium alloy A357 manufactured by selective laser melting. Mater Des 2016;109:334-46.

51. Rao JH, Zhang Y, Fang X, Chen Y, Wu X, Davies CH. The origins for tensile properties of selective laser melted aluminium alloy A357. Addit Manuf 2017;17:113-22.

52. Casati R, Vedani M. Aging response of an A357 Al alloy processed by selective laser melting. Adv Eng Mater 2019;21:1800406.

53. de Menezes JT, Castrodeza EM, Casati R. Effect of build orientation on fracture and tensile behavior of A357 Al alloy processed by selective laser melting. Mater Sci Eng A 2019;766:138392.

54. Zou T, Ou Y, Zhu H, Li L. Effects of heat treatment on microstructure and tensile properties of AlSi7Mg alloy fabricated by selective laser melting. Hot Work Technol 2019;48:154-7.

55. Tang G, Feng T, Duan G, et al. Process and properties of AlSi7Mg alloy fabricated by laser selected melting. Foundry Technol 2020;41:219-22.

56. Zou T, Ou Y, Zhu H, Qin J. Microstructure and mechanical properties of selective laser melted AlSi7Mg alloy. Available from: http://www.mater-rep.com/EN/abstract/abstract2647.shtml [Last accessed on 28 Mar 2023].

57. Cerri E, Ghio E. Aging profiles of AlSi7Mg0.6 and AlSi10Mg0.3 Alloys manufactured via laser-powder bed fusion: direct aging versus T6. Materials 2022;15:6126.

58. Cacace S, Gökhan Demir A, Sala G, Mattia Grande A. Influence of production batch related parameters on static and fatigue resistance of LPBF produced AlSi7Mg0.6. Int J Fatigue 2022;165:107227.

59. Rao JH, Zhang Y, Zhang K, Wu X, Huang A. Selective laser melted Al-7Si-0.6Mg alloy with in-situ precipitation via platform heating for residual strain removal. Mater Des 2019;182:108005.

60. Lorusso M, Trevisan F, Calignano F, Lombardi M, Manfredi D. A357 alloy by LPBF for industry applications. Materials 2020;13:1488.

61. Read N, Wang W, Essa K, Attallah MM. Selective laser melting of AlSi10Mg alloy: Process optimisation and mechanical properties development. Mater Des 2015;65:417-24.

62. Bagherifard S, Beretta N, Monti S, Riccio M, Bandini M, Guagliano M. On the fatigue strength enhancement of additive manufactured AlSi10Mg parts by mechanical and thermal post-processing. Mater Des 2018;145:28-41.

63. Li W, Li S, Liu J, et al. Effect of heat treatment on AlSi10Mg alloy fabricated by selective laser melting: microstructure evolution, mechanical properties and fracture mechanism. Mater Sci Eng A 2016;663:116-25.

64. Tradowsky U, White J, Ward R, Read N, Reimers W, Attallah M. Selective laser melting of AlSi10Mg: influence of post-processing on the microstructural and tensile properties development. Mater Des 2016;105:212-22.

65. Hitzler L, Janousch C, Schanz J, et al. Direction and location dependency of selective laser melted AlSi10Mg specimens. J Mater Process Technol 2017;243:48-61.

66. Casati R, Hamidi Nasab M, Coduri M, Tirelli V, Vedani M. Effects of platform pre-heating and thermal-treatment strategies on properties of AlSi10Mg alloy processed by selective laser melting. Metals 2018;8:954.

67. Kan WH, Nadot Y, Foley M, Ridosz L, Proust G, Cairney JM. Factors that affect the properties of additively-manufactured AlSi10Mg: porosity versus microstructure. Addit Manuf 2019;29:100805.

68. Xiong Z, Liu S, Li S, Shi Y, Yang Y, Misra R. Role of melt pool boundary condition in determining the mechanical properties of selective laser melting AlSi10Mg alloy. Mater Sci Eng A 2019;740-741:148-56.

69. Padovano E, Badini C, Pantarelli A, Gili F, D’aiuto F. A comparative study of the effects of thermal treatments on AlSi10Mg produced by laser powder bed fusion. J Alloys Compd 2020;831:154822.

70. Fiocchi J, Biffi CA, Colombo C, Vergani LM, Tuissi A. Ad hoc heat treatments for selective laser melted Alsi10mg alloy aimed at stress-relieving and enhancing mechanical performances. JOM 2020;72:1118-27.

71. Li Z, Li Z, Tan Z, Xiong D, Guo Q. Stress relaxation and the cellular structure-dependence of plastic deformation in additively manufactured AlSi10Mg alloys. Int J Plast 2020;127:102640.

72. Sert E, Hitzler L, Hafenstein S, Merkel M, Werner E, Öchsner A. Tensile and compressive behaviour of additively manufactured AlSi10Mg samples. Prog Addit Manuf 2020;5:305-13.

73. Park T, Baek M, Hyer H, Sohn Y, Lee K. Effect of direct aging on the microstructure and tensile properties of AlSi10Mg alloy manufactured by selective laser melting process. Mater Charact 2021;176:111113.

74. Ou Y, Zhang Q, Wei Y, et al. Evolution of heterogeneous microstructure and its effects on tensile properties of selective laser melted AlSi10Mg alloy. J Mater Eng Perform 2021;30:4341-55.

75. Paul MJ, Liu Q, Best JP, et al. Fracture resistance of AlSi10Mg fabricated by laser powder bed fusion. Acta Mater 2021;211:116869.

76. Riener K, Oswald S, Winkler M, Leichtfried GJ. Influence of storage conditions and reconditioning of AlSi10Mg powder on the quality of parts produced by laser powder bed fusion (LPBF). Addit Manuf 2021;39:101896.

77. Chen S, Tan Q, Gao W, et al. Effect of heat treatment on the anisotropy in mechanical properties of selective laser melted AlSi10Mg. Mater Sci Eng A 2022;858:144130.

78. Bisht MS, Gaur V, Singh I. On mechanical properties of SLM Al-Si alloy: Role of heat treatment-induced evolution of silicon morphology. Mater Sci Eng A 2022;858:144157.

79. Van Cauwenbergh P, Samaee V, Thijs L, et al. Unravelling the multi-scale structure-property relationship of laser powder bed fusion processed and heat-treated AlSi10Mg. Sci Rep 2021;11:6423.

80. Thijs L, Kempen K, Kruth J, Van Humbeeck J. Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder. Acta Mater 2013;61:1809-19.

81. Kumar MS, Javidrad HR, Shanmugam R, Ramoni M, Adediran AA, Pruncu CI. Impact of print orientation on morphological and mechanical properties of L-PBF based AlSi7Mg parts for aerospace applications. Silicon 2022;14:7083-97.

82. Ashby M. Multi-objective optimization in material design and selection. Acta Mater 2000;48:359-69.

83. Zhao L, Song L, Santos Macías JG, et al. Review on the correlation between microstructure and mechanical performance for laser powder bed fusion AlSi10Mg. Addit Manuf 2022;56:102914.

Journal of Materials Informatics
ISSN 2770-372X (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/