2. Jégourel Y. The global iron ore market: from cyclical developments to potential structural changes. Extr Ind Soc 2020;7:1128-34.
3. Zhang X, Ma G, Liu M, Li Z. Removal of residual element tin in the ferrous metallurgy process: a review. Metals 2019;9:834.
4. Nachtrab WT, Chou YT. Grain boundary segregation of copper, tin and antimony in C-Mn steels at 900 °C. J Mater Sci 1984;19:2136-44.
5. Kim SW, Lee HG. Effect of oxide scale formation on the behaviour of Cu in steel during high temperature oxidation in O2-N2 and H2O-N2 atmospheres. Steel Res Int 2009;80:121-9.
6. Yin L, Sridhar S. Effects of residual elements arsenic, antimony, and tin on surface hot shortness. Metall and Materi Trans B 2011;42:1031-43.
7. Shubhank K, Kang Y. Critical evaluation and thermodynamic optimization of Fe-Cu, Cu-C, Fe-C binary systems and Fe-Cu-C ternary system. Calphad 2014;45:127-37.
8. Melford DA. The influence of residual and trace elements on hot shortness and high temperature embrittlement. Phil Trans R Soc Lond A 1980;295:89-103.
9. Yu Y, Li L, Wang J. Sn recovery from a tin-bearing middling with a high iron content and the transformation behaviours of the associated As, Pb, and Zn. Sci Total Environ 2020;744:140863.
10. Su Z, Zhang Y, Liu B, Lu M, Li G, Jiang T. Extraction and separation of tin from tin-bearing secondary resources: a review. JOM 2017;69:2364-72.
11. Bunnakkha C, Jarupisitthorn C. Extraction of tin from hardhead by oxidation and fusion with sodium hydroxide. J Met Mater Miner 2012;22:1-6.
12. Lee S, Lee M, Kim HY. Recovery of high purity Sn by multi-step reduction of Sn-containing industrial wastes. J Korean Inst Resour Recyc 2015;24:11-5.
13. Spencer P. A brief history of CALPHAD. Calphad 2008;32:1-8.
14. Sundman B, Lukas HL, Fries SG. Computational thermodynamics: the Calphad method. 1st ed. Cambridge University Press; 2007. pp. 1-296.
15. Bale C, Bélisle E, Chartrand P, et al. FactSage thermochemical software and databases, 2010-2016. Calphad 2016;54:35-53.
16. Andersson J, Helander T, Höglund L, Shi P, Sundman B. Thermo-Calc & DICTRA, computational tools for materials science. Calphad 2002;26:273-312.
17. Cao W, Chen S, Zhang F, et al. PANDAT software with PanEngine, PanOptimizer and PanPrecipitation for multi-component phase diagram calculation and materials property simulation. Calphad 2009;33:328-42.
18. Nüssler H, von Goldbeck O, Spencer P. A thermodynamic assessment of the iron-tin system. Calphad 1979;3:19-26.
19. Kumar K, Wollants P, Delaey L. Thermodynamic evaluation of Fe-Sn phase diagram. Calphad 1996;20:139-49.
20. Miettinen J. Thermodynamic description of the Cu-Fe-Sn system at the Cu-Fe side. Calphad 2008;32:500-5.
21. Huang YC, Gierlotka W, Chen SW. Sn-Bi-Fe Thermodynamic modeling and Sn-Bi/Fe interfacial reactions. Intermetallics 2010;18:984-91.
22. Lafaye P, Toffolon-masclet C, Crivello J, Joubert J. Thermodynamic modelling of the Fe-Sn-Zr system based on new experiments and first-principles calculations. J Alloys Compd 2020;821:153200.
23. Hillert M. The compound energy formalism. J Alloys Compd 2001;320:161-76.
24. Kang YB, Pelton AD. The shape of liquid miscibility gaps and short-range-order. J Chem Thermodyn 2013;60:19-24.
25. Pelton AD, Degterov SA, Eriksson G, Robelin C, Dessureault Y. The modified quasichemical model I - binary solutions. Metall Mater Trans B 2000;31:651-9.
26. Pelton AD, Chartrand P. The modified quasi-chemical model: Part II. Multicomponent solutions. Metall Mater Trans A 2001;32:1355-60.
27. Okamoto H. Phase diagrams of binary iron alloys. Metals park, Ohio: American Society for Metals; 1993:385-92.
28. Ehret WF, Westgren AF. X-ray analysis of iron-tin alloys. J Am Chem Soc 1933;55:1339-51.
29. Campbell AN, Wood JH, Skinner GB. The system iron-tin: liquidus only. J Am Chem Soc 1949;71:1729-33.
30. Mills KC, Turkdogan ET. Liquid miscibility gap in iron-tin system. Trans Metall Soc AIME 1964;230:1202-3.
31. Hillert M, Wada T, Wada H. The alpha-gamma equilibrium in Fe-Mn, Fe-Mo, Fe-Ni, Fe-Sb, Fe-Sn and Fe-W systems. J Iron Steel Inst 1967;205:539-46.
32. Kozuka Z, Shidahara Y, Sugimoto E, et al. Thermodynamic study of hardhead (tin-iron alloy). Nippon Kogyo Kaishi 1968;84:1657-62.
33. Shiraishi SY, Bell HB. Miscibility gap in liquid iron-tin alloys. Trans Inst Min Metall Sect C 1968;77:104-5.
34. Speight EA. The gamma loop in the iron–Tin system. Met Sci J 1972;6:57-60.
35. Predel B, Frebel M. Precipitation behavior of α-solid solutions of the Fe-Sn system. Metall Trans 1973;4:243-9.
36. Nageswararao M, Mcmahon CJ, Herman H. The solubility and solution behavior of antimony and tin in α-lron and the effects of nickel and chromium additions. Metall Trans B 1974;5:1061-8.
37. Treheux D, Guiraldenq P. Etude des diagrammes d’equilibre binaires par la methode des couples de diffusion application au systeme fer-etain. Scr Metall 1974;8:363-6.
38. Connolly J, Mcallan J. The tin-iron eutecticL'eutectique etain-ferDas Zinn-eisen-eutektikum. Acta Metallurgica 1975;23:1209-14.
39. Malaman B, Roques B, Courtois A, Protas J. Structure cristalline du stannure de fer Fe3Sn2. Acta Crystallogr B Struct Sci 1976;32:1348-51.
40. Eremenko VN, Churakov MM, Pechentkovskaya LE. Conditions of stannide formation during the interaction of Fe with a Sn-Pb melt and their thermodynamic properties. Russ Metall 1976;4:58-62.
41. Yamamoto T, Takashima T, Nishida K. Interdiffusion in the α-solid solutions of the Fe-Sn system. J Jpn Inst Met 1981;45:985-90.
42. Yamamoto M, Mori S, Kato E. Mass spectrometric study of the thermodynamic properties of liquid Fe-Sn, Fe-Sn-Cu alloys. Tetsu-to-Hagane 1981;67:1952-61.
43. Arita M, Ohyama M, Goto KS, Someno M. Measurements of activity, solubility, and diffusivity in α and γ Fe-Sn alloys between 1183 and 1680 K. Int J Mater Res 1981;72:244-50.
44. Nunoue S, Kato E. Mass spectrometric determination of the miscibility gap in the liquid Fe-Sn system and the activities of this system at 1550 °C and 1600 °C. Tetsu-to-Hagane 1987;73:868-75.
45. Imai N, Tanaka T, Yuki T, Iida T, Morita Z. Equilibrium distribution of Sn between solid and liquid phases in Fe-Sn and Fe-C-Sn alloys. Tetsu-to-Hagane 1991;77:224-30.
46. Gao J, Li C, Guo C, Du Z. Investigation of the stable and the metastable liquidus miscibility gaps in Fe-Sn and Fe-Cu binary systems. Int J Miner Metall Mater 2019;26:1427-35.
47. Bernhard M, Fuchs N, Presoly P, Angerer P, Friessnegger B, Bernhard C. Characterization of the γ-loop in the Fe-P system by coupling DSC and HT-LSCM with complementary in-situ experimental techniques. Mater Charact 2021;174:111030.
48. Bernhard M, Presoly P, Fuchs N, Bernhard C, Kang Y. Experimental study of high temperature phase equilibria in the iron-rich part of the Fe-P and Fe-C-P systems. Metall Mater Trans A 2020;51:5351-64.
49. Bernhard M, Presoly P, Bernhard C et al. An assessment of analytical liquidus equations for Fe-C-Si-Mn-Al-P-alloyed steels using DSC/DTA techniques. Metall Mater Trans B 2021;52:2821-30.
50. Kim DI, Abbaschian R. The metastable liquid miscibility gap in Cu-Co-Fe alloys. J Phase Equilibria Diffus 2000;21:25-31.
51. Min S, Park J, Lee J. Surface tension of the 60% Bi-24% Cu-16%Sn alloy and the critical temperature of the immiscible liquid phase separation. Maters Lett 2008;62:4464-6.
52. Lee D, Cho Y, Kim JH, Hwang I, Chung Y, Kang Y. Application of k-means clustering to material research: measurement of layer thickness and contact angle. Met Mater Int ;2023:1-12.
53. Lee S. Comparison of initial seeds methods for K-means clustering. J Internet Comput Serv 2012;13:1-8.
54. Morissette L, Chartier S. The k-means clustering technique: general considerations and implementation in Mathematica. Tutor Quant Methods Psychol 2013;9:15-24.
55. Boettinger WJ, Kattner UR, Moon K, Perepezko JH. DTA and heat-flux DSC measurements of alloy melting and freezing. In: Zhao ZC, editor. Methods for phase diagram determination. Amsterdam: Elsevier Science; 2006. pp. 151-205.
56. Barin I. Thermochemical data of pure substances. Part I and Part II. NewYork: Verlag Chemie; 1989, pp. 1392.
57. Humenik M, Kingery WD. Metal-ceramic interactions: III, surface tension and wettability of metal-ceramic systems. J Am Ceramic Soc 1954;37:18-23.
58. Chidambaram PR, Edwards GR, Olson DL. A thermodynamic criterion to predict wettability at metal- alumina interfaces. Metall Mater Trans B 1992;23:215-22.
59. Kapilashrami E, Jakobsson A, Seetharaman S, Lahiri AK. Studies of the wetting characteristics of liquid iron on dense alumina by the X-ray sessile drop technique. Metall and Materi Trans B 2003;34:193-9.
60. Nikolopoulos P. Surface, grain-boundary and interfacial energies in Al2O3 and Al2O3-Sn, Al2O3-Co systems. J Mater Sci 1985;20:3993-4000.
61. Pelton AD, Kang Y. Modeling short-range ordering in solutions. Int J Mater Res 2007;98:907-17.
62. Tafwidli F, Kang Y. Thermodynamic modeling of Fe-C-S ternary system. ISIJ Int 2017;57:782-90.
63. Pelton AD, Blander M. Thermodynamic analysis of ordered liquid solutions by a modified quasichemical approach - application to silicate slags. Metall Mater Trans B 1986;17:805-15.
64. Hillert M, Jarl M. A model for alloying in ferromagnetic metals. Calphad 1978;2:227-38.
65. Dinsdale A. SGTE data for pure elements. Calphad 1991;15:317-425.
66. Gustafson P. A thermodynamic evaluation of Fe-C system. Scand J Metall 1985;14:259-67.
67. Batalin GI, Sudavtsova VS, Kurach VP. Thermodynamic properties of liquid Fe-Sn alloys. Izv Akad Nauk SSSR 1984;4:50-1.
68. Petrushevskiy MS, Esin YuO, Bayev VM, et al. Influence of short-range ordering on the concentration dependence of the enthalpies of formation of liquid of iron-tin alloys. Russ Metall 1978;1:61-3.
69. Lück R, Predel B. The enthalpy of mixing of liquid iron-tin alloys determined by means of a new high-temperature calorimeter. Z Metallkd 1985;76:684-6.
70. Wagner S, St. pierre GR. Thermodynamics of the liquid binary iron-tin by mass spectrometry. Metall Trans B 1972;3:2873-8.
71. Maruyama N, Ban-Ya S. Measurement of activities in liquid Fe-Cu, Fe-Cr and Fe-Sn alloys by a transportation method. J Japan Inst Met Mater 1980;44:1422-31.
72. Eremenko VN, Lukashenko GM, Pritula VL. Thermodyanmic properties of Fe-Sn melts. Russ Metall 1972;1:72-5.
73. Fedorenko AN, Brovkin VG. Vapor pressure of tin and thermodynamic properties of the tin and iron system. Sb Nauchn Tr-Gos Proektn Nauchno-Issled Inst 1977;3:83-9.
74. Shiraishi SY, and Bell HB. Thermodynamic study of tin smelting. PT. 1. Iron-tin and iron-tin-oxygen alloys. Inst Mining Met Trans Sect C 1970;79:C120-7.
75. Yazawa A, Koike K. Tin smelting. II. Activity measurements in molten tin-iron alloy. Nippon Kogyo Kaishi 1969;85:39-42.
76. Wang J, Hudon P, Kevorkov D, Chartrand P, Jung I, Medraj M. Thermodynamic and experimental study of the Mg-Sn-Ag-in quaternary system. J Phase Equilib Diffus 2014;35:284-313.
77. Jannin C, Michel A, Lecocq P. Magnetism and properties of different phases in the Fe-Sn system. Comptes Redus Hebomadaires Seances Acad Sci 1963;257:1906-7.
78. Zabyr L, Fitzner K. Gibbs free energy of formation of iron antimonide (FeSb2), iron-tin (FeSn), and iron-tin (FeSn2) intermetallic phases. Arch Hutn 1984;29:227-33.
79. Wu P, Song J, Yu X, et al. Evidence of spin reorientation and anharmonicity in kagome ferromagnet Fe3Sn2. Appl Phys Lett 2021;119:082401.
80. Sales BC, Yan J, Meier WR, Christianson AD, Okamoto S, Mcguire MA. Electronic, magnetic, and thermodynamic properties of the kagome layer compound FeSn. Phys Rev Mater 2019;3:1-8.
81. Kubaschewski O. Iron binary phase diagrams. 1st ed. Berlin Heidelberg: Springer Science & Business Media; 1982, pp.139-42.
82. Hultgren R, Desai PD, Hawkins DT, et al. Selected values of the thermodynamic properties of binary alloys. Metals Park, Ohio: American Society for Metals; 1973, pp. 884-7.
83. Hansen M, Anderko K. Constitution of binary alloys. New York: McGraw-Hill; 1958, pp.718-20.
84. Singh M, Bhan S. Contribution to the Fe - Sn system. J Mater Sci Lett 1986;5:733-5.
Comments
Comments must be written in English. Spam, offensive content, impersonation, and private information will not be permitted. If any comment is reported and identified as inappropriate content by OAE staff, the comment will be removed without notice. If you have any queries or need any help, please contact us at support@oaepublish.com.