REFERENCES

1. Balakrishnarajan MM, Hoffmann R. Electron-deficient bonding in rhomboid rings. J Am Chem Soc 2004;126:13119-31.

2. Tang H, Ismail-Beigi S. Novel precursors for boron nanotubes: the competition of two-center and three-center bonding in boron sheets. Phys Rev Lett 2007;99:115501.

3. Yang X, Ding Y, Ni J. Ab initio prediction of stable boron sheets and boron nanotubes: structure, stability, and electronic properties. Phys Rev B 2008:77.

4. Penev ES, Bhowmick S, Sadrzadeh A, Yakobson BI. Polymorphism of two-dimensional boron. Nano Lett 2012;12:2441-5.

5. Wu X, Dai J, Zhao Y, Zhuo Z, Yang J, Zeng XC. Two-dimensional boron monolayer sheets. ACS Nano 2012;6:7443-53.

6. Zhai HJ, Zhao YF, Li WL, et al. Observation of an all-boron fullerene. Nat Chem 2014;6:727-31.

7. Sergeeva AP, Popov IA, Piazza ZA, et al. Understanding boron through size-selected clusters: structure, chemical bonding, and fluxionality. Acc Chem Res 2014;47:1349-58.

8. Zhang Z, Penev ES, Yakobson BI. Two-dimensional boron: structures, properties and applications. Chem Soc Rev 2017;46:6746-63.

9. Szwacki N, Sadrzadeh A, Yakobson BI. B80 fullerene: an Ab initio prediction of geometry, stability, and electronic structure. Phys Rev Lett 2007;98:166804.

10. Liu Y, Penev ES, Yakobson BI. Probing the synthesis of two-dimensional boron by first-principles computations. Angew Chem Int Ed Engl 2013;52:3156-9.

11. Zhang H, Xie Y, Zhang Z, et al. Dirac nodal lines and tilted semi-dirac cones coexisting in a striped boron sheet. J Phys Chem Lett 2017;8:1707-13.

12. Singh AK, Sadrzadeh A, Yakobson BI. Probing properties of boron alpha-tubes by Ab Initio calculations. Nano Lett 2008;8:1314-7.

13. Zhao J, Wang L, Li F, Chen Z. B(80) and other medium-sized boron clusters: core-shell structures, not hollow cages. J Phys Chem A 2010;114:9969-72.

14. Li F, Jin P, Jiang DE, et al. B80 and B101-103 clusters: remarkable stability of the core-shell structures established by validated density functionals. J Chem Phys 2012;136:074302.

15. Piazza ZA, Hu HS, Li WL, Zhao YF, Li J, Wang LS. Planar hexagonal B(36) as a potential basis for extended single-atom layer boron sheets. Nat Commun 2014;5:3113.

16. Mannix AJ, Zhou XF, Kiraly B, et al. Synthesis of borophenes: anisotropic, two-dimensional boron polymorphs. Science 2015;350:1513-6.

17. Feng B, Zhang J, Zhong Q, et al. Experimental realization of two-dimensional boron sheets. Nat Chem 2016;8:563-8.

18. Kiraly B, Liu X, Wang L, et al. Borophene synthesis on Au(111). ACS Nano 2019;13:3816-22.

19. Wu R, Drozdov IK, Eltinge S, et al. Large-area single-crystal sheets of borophene on Cu(111) surfaces. Nat Nanotechnol 2019;14:44-9.

20. Xie SY, Wang Y, Li XB. Flat Boron: a new cousin of graphene. Adv Mater 2019;31:e1900392.

21. Xie Z, Meng X, Li X, et al. Two-dimensional borophene: properties, fabrication, and promising applications. Research (Wash D C) 2020;2020:2624617.

22. Kaneti YV, Benu DP, Xu X, Yuliarto B, Yamauchi Y, Golberg D. Borophene: two-dimensional boron monolayer: synthesis, properties, and potential applications. Chem Rev 2022;122:1000-51.

23. Ou M, Wang X, Yu L, et al. The emergence and evolution of borophene. Adv Sci (Weinh) 2021;8:2001801.

24. Zhang Z, Yang Y, Gao G, Yakobson BI. Two-dimensional boron monolayers mediated by metal substrates. Angew Chem 2015;127:13214-8.

25. Xu SG, Li XT, Zhao YJ, et al. Two-dimensional semiconducting boron monolayers. J Am Chem Soc 2017;139:17233-6.

26. Li W, Chen X, Jian T, Chen T, Li J, Wang L. From planar boron clusters to borophenes and metalloborophenes. Nat Rev Chem 2017:1.

27. Romanescu C, Galeev TR, Li W, Boldyrev AI, Wang L. Aromatic metal-centered monocyclic boron rings: Co©B8− and Ru©B9−. Angew Chem 2011;123:9506-9.

28. Popov IA, Jian T, Lopez GV, Boldyrev AI, Wang LS. Cobalt-centred boron molecular drums with the highest coordination number in the CoB16- cluster. Nat Commun 2015;6:8654.

29. Zhang H, Li Y, Hou J, Tu K, Chen Z. FeB6 monolayers: the Graphene-like material with hypercoordinate transition metal. J Am Chem Soc 2016;138:5644-51.

30. Zhang H, Li Y, Hou J, Du A, Chen Z. Dirac state in the FeB2 monolayer with graphene-like boron sheet. Nano Lett 2016;16:6124-9.

31. Hoff V, Henricus J. Sur les formules de structure dans l’espace. Archives néerlandaises des sciences exactes et naturelles 1874; 9:445-454.

32. Bel L, Achille J. Sur les relations qui existent entre les formules atomiques des corps organiques et le pouvoir rotatoire de leurs dissolutions. Bulletin de la Société Chimique de Paris 1874; 22:337-347.

33. Yang LM, Ganz E, Chen Z, Wang ZX, Schleyer Pv. Four decades of the chemistry of planar hypercoordinate compounds. Angew Chem Int Ed Engl 2015;54:9468-501.

34. Wang Y, Li Y, Chen Z. Planar hypercoordinate motifs in two-dimensional materials. Acc Chem Res 2020;53:887-95.

35. Yam VW, Fung WK, Cheung K. Luminescence behavior of polynuclear alkynylcopper(I) Phosphines. J Cluster Sci 1999; 10:37-69.

36. Vega A, Calvo V, Spodine E, Zárate A, Fuenzalida V, Saillard JY. A novel copper cobalt inorganometallic cluster. Synthesis, structure and bonding analysis of Cu(3)[mu(2)-(CCHCo(2)(CO)(6))](3). Inorg Chem 2002;41:3389-95.

37. Tsipis AC, Tsipis CA. Hydrometal analogues of aromatic hydrocarbons: a new class of cyclic hydrocoppers(I). J Am Chem Soc 2003;125:1136-7.

38. Boca R, Dlhán L, Mezei G, Ortiz-Pérez T, Raptis RG, Telser J. Triangular, ferromagnetically-coupled CuII 3-pyrazolato complexes as possible models of particulate methane monooxygenase (pMMO). Inorg Chem 2003;42:5801-3.

39. Gawande MB, Goswami A, Felpin FX, et al. Cu and Cu-based nanoparticles: synthesis and applications in catalysis. Chem Rev 2016;116:3722-811.

40. Bhanushali S, Ghosh P, Ganesh A, Cheng W. 1D copper nanostructures: progress, challenges and opportunities. Small 2015;11:1232-52.

41. Yang L, Frauenheim T, Ganz E. Properties of the free-standing two-dimensional copper monolayer. J Nanomater 2016;2016:1-6.

42. Yang LM, Bačić V, Popov IA, et al. Two-dimensional Cu2Si monolayer with planar hexacoordinate copper and silicon bonding. J Am Chem Soc 2015;137:2757-62.

43. Feng B, Fu B, Kasamatsu S, et al. Experimental realization of two-dimensional Dirac nodal line fermions in monolayer Cu2Si. Nat Commun 2017;8:1007.

44. Yan L, Liu P, Bo T, et al. Emergence of superconductivity in a Dirac nodal-line Cu2Si monolayer: ab initio calculations. J Mater Chem C 2019;7:10926-32.

45. Ma Y, Kou L, Dai Y, Heine T. Two-dimensional topological insulators in group-11 chalcogenide compounds: M2Te(M=Cu,Ag). Phys Rev B 2016:93.

46. Yang LM, Popov IA, Boldyrev AI, Heine T, Frauenheim T, Ganz E. Post-anti-van’t Hoff-Le Bel motif in atomically thin germanium-copper alloy film. Phys Chem Chem Phys 2015;17:17545-51.

47. Li S, Ren G, Miao C, Jin Z. M4H4X: Hydrometals (M = Cu, Ni) containing tetracoordinate planar nonmetals (X=B, C, N, O). Angew Chem 2004;116:1395-7.

48. Li S, Miao C, Ren G. D5h Cu5H5X: Pentagonal hydrocopper Cu5H5 containing pentacoordinate planar nonmetal centers (X = B, C, N, O). Eur J Inorg Chem 2004;2004:2232-4.

49. Jia J, Zhang H, Wang Z, Zhao J, Zhou Z. A Cu2B2 monolayer with planar hypercoordinate motifs: an efficient catalyst for CO electroreduction to ethanol. J Mater Chem A 2020;8:9607-15.

50. Weng X, He X, Hou J, et al. First-principles prediction of two-dimensional copper borides. Phys Rev Materials 2020:4.

51. Yue C, Weng X, Gao G, et al. Formation of copper boride on Cu(111). Fundam Res 2021;1:482-7.

52. Becke AD. Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 1993;98:5648-52.

53. Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B Condens Matter 1988;37:785-9.

54. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem 1994;98:11623-7.

55. Neese F. Software update: the ORCA program system, version 4.0. WIREs Comput Mol Sci 2018:8.

56. Blöchl PE. Projector augmented-wave method. Phys Rev B Condens Matter 1994;50:17953-79.

57. Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 1999;59:1758-75.

58. Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals. Phys Rev B Condens Matter 1993;47:558-61.

59. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett 1996;77:3865-8.

60. Heyd J, Scuseria GE, Ernzerhof M. Hybrid functionals based on a screened Coulomb potential. J Chem Phys 2003;118:8207-15.

61. Becke AD, Edgecombe KE. A simple measure of electron localization in atomic and molecular systems. J Chem Phys 1990;92:5397-403.

62. Silvi B, Savin A. Classification of chemical bonds based on topological analysis of electron localization functions. Nature 1994;371:683-6.

63. Galeev TR, Dunnington BD, Schmidt JR, Boldyrev AI. Solid state adaptive natural density partitioning: a tool for deciphering multi-center bonding in periodic systems. Phys Chem Chem Phys 2013;15:5022-9.

64. Clark SJ, Segall MD, Pickard CJ, et al. First principles methods using CASTEP. Z Kristallogr - Cryst Mater 2005;220:567-70.

65. Segall MD, Shah R, Pickard CJ, Payne MC. Population analysis of plane-wave electronic structure calculations of bulk materials. Phys Rev B 1996; 54:16317-16320.

66. Togo A, Tanaka I. First principles phonon calculations in materials science. Scr Mater 2015;108:1-5.

67. Martyna GJ, Klein ML, Tuckerman M. Nosé-Hoover chains: the canonical ensemble via continuous dynamics. J Chem Phys 1992;97:2635-43.

68. Giannozzi P, Baroni S, Bonini N, et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter 2009;21:395502.

69. Savrasov SY, Savrasov DY, Andersen OK. Linear-response calculations of electron-phonon interactions. Phys Rev Lett 1994;72:372-5.

70. Kurth S, Marques M, Lüders M, Gross EKU. Local density approximation for superconductors. Phys Rev Lett 1999;83:2628-31.

71. Moret ME, Zhang L, Peters JC. A polar copper-boron one-electron σ-bond. J Am Chem Soc 2013;135:3792-5.

72. Holler S, Tüchler M, Belaj F, Veiros LF, Kirchner K, Mösch-Zanetti NC. Thiopyridazine-based copper boratrane complexes demonstrating the Z-type nature of the ligand. Inorg Chem 2016;55:4980-91.

73. Wang Y, Quillian B, Wei P, et al. A stable, neutral diborene containing a B=B double bond. J Am Chem Soc 2007;129:12412-3.

74. Zhou M, Tsumori N, Li Z, Fan K, Andrews L, Xu Q. OCBBCO: a neutral molecule with some boron-boron triple bond character. J Am Chem Soc 2002;124:12936-7.

75. Braunschweig H, Dewhurst RD, Hammond K, Mies J, Radacki K, Vargas A. Ambient-temperature isolation of a compound with a boron-boron triple bond. Science 2012;336:1420-2.

76. Wiberg K. Application of the pople-santry-segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane. Tetrahedron 1968;24:1083-96.

77. Harper LK, Shoaf AL, Bayse CA. Predicting trigger bonds in explosive materials through wiberg bond index analysis. Chem Phys Chem 2015; 16:3886-3892.

78. Mayer I. Bond order and valence indices: a personal account. J Comput Chem 2007;28:204-21.

79. Foster JP, Weinhold F. Natural hybrid orbitals. J Am Chem Soc 1980;102:7211-8.

80. Reed AE, Weinhold F. Natural bond orbital analysis of near-Hartree-Fock water dimer. J Chem Phys 1983;78:4066-73.

81. Hoffmann R, Alder RW, Wilcox CF. Planar tetracoordinate carbon. J Am Chem Soc 1970;92:4992-3.

82. Reed AE, Weinstock RB, Weinhold F. Natural population analysis. J Chem Phys 1985;83:735-46.

83. Hirshfeld FL. Bonded-atom fragments for describing molecular charge densities. Theoret Chim Acta 1977;44:129-38.

84. Lee C, Wei X, Kysar JW, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008; 321:385-388.

85. Cai Y, Zhang G, Zhang YW. Polarity-reversed robust carrier mobility in monolayer MoS₂ nanoribbons. J Am Chem Soc 2014;136:6269-75.

86. Wei X, Fragneaud B, Marianetti CA, Kysar JW. Nonlinear elastic behavior of graphene: Ab initio calculations to continuum description. Phys Rev B 2009:80.

87. Peng Q, Ji W, De S. Mechanical properties of the hexagonal boron nitride monolayer: Ab initio study. Comput Materi Sci 2012;56:11-7.

88. Cooper RC, Lee C, Marianetti CA, Wei X, Hone J, Kysar JW. Nonlinear elastic behavior of two-dimensional molybdenum disulfide. Phys Rev B 2013:87.

89. Nagamatsu J, Nakagawa N, Muranaka T, Zenitani Y, Akimitsu J. Superconductivity at 39K in magnesium diboride. Nature 2001;410:63-4.

90. Kortus J, Mazin II, Belashchenko KD, Antropov VP, Boyer LL. Superconductivity of metallic boron in MgB2. Phys Rev Lett 2001;86:4656-9.

91. Allen PB, Dynes RC. Transition temperature of strong-coupled superconductors reanalyzed. Phys Rev B 1975;12:905-22.

92. Chen J, Ge Y. Emergence of intrinsic superconductivity in monolayer W2N3. Phys Rev B 2021:103.

93. Singh S, Romero AH, Mella JD, et al. High-temperature phonon-mediated superconductivity in monolayer Mg2B4C2. npj Quantum Mater 2022:7.

94. Zhang X, Zhou Y, Cui B, Zhao M, Liu F. Theoretical discovery of a superconducting two-dimensional metal-organic framework. Nano Lett 2017;17:6166-70.

95. Bud'ko SL, Lapertot G, Petrovic C, Cunningham CE, Anderson N, Canfield PC. Boron isotope effect in superconducting MgB2. Phys Rev Lett 2001;86:1877-80.

96. Ge Y, Guan S, Liu Y. Two dimensional superconductors in electrides. New J Phys 2017;19:123020.

97. Wang L, Xu C, Liu Z, et al. Magnetotransport properties in high-quality ultrathin two-dimensional superconducting Mo2C crystals. ACS Nano 2016;10:4504-10.

98. Song B, Zhou Y, Yang HM, et al. Two-dimensional anti-van’t hoff/Le Bel array AlB6 with high stability, unique motif, triple dirac cones, and superconductivity. J Am Chem Soc 2019;141:3630-40.

99. Peng R, Shen XP, Xie X, et al. Measurement of an enhanced superconducting phase and a pronounced anisotropy of the energy gap of a strained FeSe single layer in FeSe/Nb:SrTiO3/KTaO3 heterostructures using photoemission spectroscopy. Phys Rev Lett 2014;112:107001.

Journal of Materials Informatics
ISSN 2770-372X (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/