REFERENCES
1. Qi L, Han J, Gao W, Jiang Q. Monolayer tellurenyne assembled with helical telluryne: structure and transport properties. Nanoscale 2019;11:4053-60.
2. Wang Y, Qiu G, Wang R, et al. Field-effect transistors made from solution-grown two-dimensional tellurene. Nat Electron 2018;1:228-36.
3. Qiu G, Wang Y, Nie Y, et al. Quantum transport and band structure evolution under high magnetic field in few-layer tellurene. Nano Lett 2018;18:5760-7.
4. Zhu Z, Cai X, Yi S, et al. Multivalency-driven formation of Te-based monolayer materials: a combined first-principles and experimental study. Phys Rev Lett 2017;119:106101.
5. Doi T, Nakao K, Kamimura H. The valence band structure of tellurium. I. The k·p Perturbation Method. J Phys Soc Jpn 1970;28:36-43.
6. Martin RM, Lucovsky G, Helliwell K. Intermolecular bonding and lattice dynamics of Se and Te. Phys Rev B 1976;13:1383-95.
7. Du Y, Qiu G, Wang Y, et al. One-dimensional van der waals material tellurium: raman spectroscopy under strain and magneto-transport. Nano Lett 2017;17:3965-73.
8. Medeiros PVC, Marks S, Wynn JM, et al. Single-atom scale structural selectivity in Te nanowires encapsulated inside ultranarrow, single-walled carbon nanotubes. ACS Nano 2017;11:6178-85.
9. Pham T, Oh S, Stetz P, et al. Torsional instability in the single-chain limit of a transition metal trichalcogenide. Science 2018;361:263-6.
10. Kobayashi K, Yasuda H. Structural transition of tellurium encapsulated in confined one-dimensional nanospaces depending on the diameter. Chemical Physics Letters 2015;634:60-5.
11. Agapito LA, Kioussis N, Goddard WA 3rd, Ong NP. Novel family of chiral-based topological insulators: elemental tellurium under strain. Phys Rev Lett 2013;110:176401.
12. Han J, Zhang A, Chen M, Gao W, Jiang Q. Giant Rashba splitting in one-dimensional atomic tellurium chains. Nanoscale 2020;12:10277-83.
13. Walker KE, Rance GA, Pekker Á, et al. Growth of carbon nanotubes inside boron nitride nanotubes by coalescence of fullerenes: toward the world’s smallest coaxial cable. Small Methods 2017;1:1700184.
14. Nieto-Ortega B, Villalva J, Vera-Hidalgo M, Ruiz-González L, Burzurí E, Pérez EM. Band-gap opening in metallic single-walled carbon nanotubes by encapsulation of an organic salt. Angew Chem Int Ed Engl 2017;56:12240-4.
15. Komsa HP, Senga R, Suenaga K, Krasheninnikov AV. Structural distortions and charge density waves in iodine chains encapsulated inside carbon nanotubes. Nano Lett 2017;17:3694-700.
16. Qin J, Liao P, Si M, et al. Raman response and transport properties of tellurium atomic chains encapsulated in nanotubes. Nat Electron 2020;3:141-7.
17. Ilie A, Bendall JS, Nagaoka K, Egger S, Nakayama T, Crampin S. Encapsulated inorganic nanostructures: a route to sizable modulated, noncovalent, on-tube potentials in carbon nanotubes. ACS Nano 2011;5:2559-69.
18. Slade CA, Sanchez AM, Sloan J. Unprecedented new crystalline forms of SnSe in narrow to medium diameter carbon nanotubes. Nano Lett 2019;19:2979-84.
19. Fujimori T, dos Santos RB, Hayashi T, Endo M, Kaneko K, Tománek D. Formation and properties of selenium double-helices inside double-wall carbon nanotubes: experiment and theory. ACS Nano 2013;7:5607-13.
20. Fujimori T, Morelos-Gómez A, Zhu Z, et al. Conducting linear chains of sulphur inside carbon nanotubes. Nat Commun 2013;4:2162.
21. Liu M, Hisama K, Zheng Y, et al. Photoluminescence from SINGLE-WALLEd MoS2 nanotubes coaxially grown on boron nitride nanotubes. ACS Nano 2021;15:8418-26.
22. Segall MD, Lindan PJD, Probert MJ, et al. First-principles simulation: ideas, illustrations and the CASTEP code. J Phys : Condens Matter 2002;14:2717-44.
23. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett 1996;77:3865-8.
24. Tkatchenko A, Scheffler M. Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. Phys Rev Lett 2009;102:073005.
26. Hu S, Zhou Z, Robertson BE. Consistent approaches to van der Waals radii for the metallic elements. Zeitschrift für Kristallographie 2009;224:375-83.
27. Lanzillo NA, Kharche N, Nayak SK. Substrate-induced band gap renormalization in semiconducting carbon nanotubes. Sci Rep 2014;4:3609.
28. Xiang H, Yang J, Hou J, Zhu Q. First-principles study of small-radius single-walled BN nanotubes. Phys Rev B 2003:68.
29. Eliseev AA, Yashina LV, Kharlamova MV, Kiselev NA. Electronic properties of carbon nanotubes. In: M. Marulanda editor. Chapter 8: One-dimensional crystals inside single-walled carbon nanotubes: growth, structure and electronic properties. IntechOpen publisher; 2011. pp. 127-156
30. Pari S, Cuéllar A, Wong BM. Structural and electronic properties of graphdiyne carbon nanotubes from large-scale DFT calculations. J Phys Chem C 2016;120:18871-7.
31. Nitta J, Akazaki T, Takayanagi H, Enoki T. Gate control of spin-orbit interaction in an inverted I n0.53 G a0.47 As/I n0.52 A l0.48 as heterostructure. Phys Rev Lett 1997;78:1335-8.
32. Barke I, Zheng F, Rügheimer TK, Himpsel FJ. Experimental evidence for spin-split bands in a one-dimensional chain structure. Phys Rev Lett 2006;97:226405.
33. Park J, Jung SW, Jung MC, Yamane H, Kosugi N, Yeom HW. Self-assembled nanowires with giant Rashba split bands. Phys Rev Lett 2013;110:036801.
34. Tanaka T, Gohda Y. First-principles prediction of one-dimensional giant Rashba splittings in Bi-adsorbed In atomic chains. Phys Rev B 2018:98.