REFERENCES

1. Kittel C. Introduction to solid state physics. 8th ed. Hoboken: John Wiley & Sons; 2005.

2. Dong C, Wang Q, Qiang JB, et al. From clusters to phase diagrams: composition rules of quasicrystals and bulk metallic glasses. J Phys D: Appl Phys 2007;40:R273-91.

3. Dong C, Wang Z, Zhang S, Wang Y. Review of structural models for the compositional interpretation of metallic glasses. Int Mater Rev 2020;65:286-96.

4. Mackay AL, Finney JL. Structuration. J Appl Crystallogr 1973;6:284-9.

5. Mackay AL, Finney JL, Gotoh K. The closest packing of equal spheres on a spherical surface. Acta Cryst A 1977;33:98-100.

6. Dong C, Perrot A, Dubois JM, Belin E. Hume-rothery phases with constant e/a value and their related electronic properties in Al-Cu-Fe(-Cr) quasicrystalline systems. Mater Sci Forum 1994;150-151:403-16.

7. Qiang J, Wang D, Bao C, et al. Formation rule for Al-based ternary quasi-crystals: Example of Al-Ni-Fe decagonal phase. J Mater Res 2001;16:2653-60.

8. Wang YM, Qiang JB, Wong CH, Shek CH, Dong C. Composition rule of bulk metallic glasses and quasicrystals using electron concentration criterion. J Mater Res 2003;18:642-8.

9. Wang Y. The e/a factor governing the formation and stability of (Zr76Ni24)1-xAlx bulk metallic glasses. Scripta Materialia 2003;48:1525-9.

10. Feng D, Jin G. Condensed state physics. Beijing: High Education Press; 2012.

11. Ziman JM. Models of disorder - the theoretical physics of homogeneously disordered systems. Cambridge: Cambridge University Press; 1979.

12. Bragg WL, Williams EJ. The effect of thermal agitation on atomic arrangement in alloys. Proc R Soc Lond A 1934;145:699-730.

13. Bethe HA. Statistical theory of superlattices. Proc R Soc Lond A 1935;150:552-75.

14. Peierls R. Statistical theory of superlattices with unequal concentrations of the components. Proc R Soc Lond A 1936;154:207-22.

15. Kirkwood JG. Order and disorder in binary solid solutions. J Chem Phys 1938;6:70-5.

16. Cowley JM. X-ray measurement of order in single crystals of Cu3Au. J Appl Phys 1950;21:24-30.

17. Cowley JM. An approximate theory of order in alloys. Phys Rev 1950;77:669-75.

18. Cowley JM. Short- and long-range order parameters in disordered solid solutions. Phys Rev 1960;120:1648-57.

19. Cowley JM. Short-range order and long-range order parameters. Phys Rev 1965;138:A1384-9.

20. Friedel J. XIV. The distribution of electrons round impurities in monovalent metals. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 2010;43:153-89.

21. Friedel J. Electronic structure of primary solid solutions in metals. Adv Phys 1954;3:446-507.

22. Friedel J. Metallic alloys. Nuovo Cim 1958;7:287-311.

23. Langer J, Vosko S. The shielding of a fixed charge in a high-density electron gas. J Phys Condens Matter 1960;12:196-205.

24. Heine V, Weaire D. Pseudopotential theory of cohesion and structure. Elsevier; 1970. pp. 249-463.

25. Harrison WA. Solid state theory. New York: McGraw-Hill, Inc.; 1970.

26. Ziman JM. Principles of the theory of solids. Cambridge: Cambridge university press; 1972.

27. Häussler P. A new hume-rothery phase with an amorphous structure in noble-metal/simple-metal alloys. J Phys Colloques 1985;46:C8-361-5.

28. Kroha J, Huck A, Kopp T. Coulomb interaction and disorder at q=2kF: a novel instability of the fermi sea and implications for amorphous alloys. Phys Rev Lett 1995;75:4278-81.

29. Häussler P. Interrelations between atomic and electronic structures-Liquid and amorphous metals as model systems. Physics Reports 1992;222:65-143.

30. Jiang B, Wang Q, Dong C, Liaw PK. Exploration of phase structure evolution induced by alloying elements in Ti alloys via a chemical-short-range-order cluster model. Sci Rep 2019;9:3404.

31. Senkov O, Miracle D, Keppens V, Liaw P. Development and characterization of low-density ca-based bulk metallic glasses: an overview. Metall Mater Trans A 2008;39:1888-900.

32. Han G, Qiang J, Li F, et al. The e/a values of ideal metallic glasses in relation to cluster formulae. Acta Materialia 2011;59:5917-23.

33. Luo L, Chen H, Wang Y, et al. 24 electron cluster formulas as the ‘molecular’ units of ideal metallic glasses. Philos Mag 2014;94:2520-40.

34. Stainless Steel Branch of China Special Steel Enterprises Association. Stainless steel practical manual. Beijing: China Science and Technology Press; 2003.

35. Li Z, Zhang R, Zha Q, Wang Y, Qiang J, Dong C. Composition design of superhigh strength maraging stainless steels using a cluster model. Progress in Natural Science:. Materials International 2014;24:35-41.

36. Wang Q, Ma Y, Jiang B, et al. A cuboidal B2 nanoprecipitation-enhanced body-centered-cubic alloy Al0.7CoCrFe2Ni with prominent tensile properties. Scripta Materialia 2016;120:85-9.

37. Ma Y, Wang Q, Jiang B, et al. Controlled formation of coherent cuboidal nanoprecipitates in body-centered cubic high-entropy alloys based on Al2(Ni,Co,Fe,Cr)14 compositions. Acta Mater 2018;147:213-25.

38. Hong HL, Wang Q, Dong C, Liaw PK. Understanding the Cu-Zn brass alloys using a short-range-order cluster model: significance of specific compositions of industrial alloys. Sci Rep 2014;4:7065.

39. Liu T, Zhang S, Wang Q, Min X, Dong C. Composition formulas of Ti alloys derived by interpreting Ti-6Al-4V. Sci China Technol Sci 2021;64:1732-40.

40. Wang ZR, Qiang JB, Wang YM, et al. Composition design procedures of Ti-based bulk metallic glasses using the cluster-plus-glue-atom model. Acta Mater 2016;111:366-76.

41. Zhang S, Dong D, Wang Z, Dong C, Häussler P. Composition formulas of Ni-(Nb, Ta) bulk metallic glasses. Intermetallics 2017;85:176-9.

42. Li Y, Guo Q, Kalb JA, Thompson CV. Matching glass-forming ability with the density of the amorphous phase. Science 2008;322:1816-9.

43. Massalski TB, Okamoto H, Subramanian PR, et al. Binary alloy phase diagrams. 2nd ed. USA: ASM International; 1990.

44. Zhang S, Dong D, Wang Z, Dong C, Häussler P. Spherical periodicity as structural homology of crystalline and amorphous states. Sci China Mater 2018;61:409-16.

45. Zhang S, Dong C, Häussler P. Structural relationship between crystalline and amorphous states in Cu-(Zr, Ti) binary systems. J Phys Condens Matter 2021;33:074001.

46. Ma YP, Dong DD, Dong C, et al. Composition formulas of binary eutectics. Sci Rep 2015;5:17880.

47. Wang Z, Chen R, Qiang J, Zhang S, Zhao Y. Cluster-based composition interpretation of dual-phase glass-crystal alloys via the example of Mg49Cu42Y9. J Non Cryst Solids 2021;566:120886.

48. Zhang S, Dong C. Dual-cluster interpretation of binary eutectics associated with hexagonal close-packed solid solution phases. Mater Lett 2018;233:71-3.

49. Han K, Wang Y, Qiang J, et al. Dual-cluster formulas for eutectic-type bulk metallic glasses and experimental verification in Zr-Al-Fe-Cu system. Materials & Design 2019;183:108142.

50. Zhang S, Dong C, Ma Y, et al. Materials characteristics of thin films. VACUUM 2020;57:11-8. (in Chinese)

51. Zachariasen WH. The atomic arrangement in glass. J Am Chem Soc 1932;54:3841-51.

Journal of Materials Informatics
ISSN 2770-372X (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/