REFERENCES
1. Kok, C. L.; Ho, C. K.; Teo, T. H.; Kato, K.; Koh, Y. Y. A novel implementation of a social robot for sustainable human engagement in homecare services for ageing populations. Sensors 2024, 24, 4466.
2. Lee, S.; Kang, W. Research landscape on hidden workers in aging populations: bibliometric review. Soc. Sci. 2024, 13, 342.
3. Song, M.; Wu, Q.; Zhu, H. Could the aging of the rural population boost green agricultural total factor productivity? Evidence from China. Sustainability 2024, 16, 6117.
4. Johnson, A. A.; Shokhirev, M. N. Contextualizing aging clocks and properly describing biological age. Aging. Cell. 2024, 23, e14377.
5. Kobelyatskaya, A. A.; Guvatova, Z. G.; Tkacheva, O. N.; et al. EchoAGE: echocardiography-based neural network model forecasting heart biological age. Aging. Dis. 2024, 16, 2383-97.
6. Martinez-Romero J, Fernandez ME, Bernier M, et al; Study of Longitudinal Aging in Mice (SLAM) Investigators. A hematology-based clock derived from the Study of Longitudinal Aging in Mice to estimate biological age. Nat. Aging. 2024, 4, 1882-96.
7. Zhao, C.; Yang, Y.; Wang, Y.; et al. Combined effects of genetic predisposition and sleep quality on acceleration of biological ageing: findings from the UK biobank cohort. Arch. Gerontol. Geriatr. 2024, 126, 105525.
8. Patel, L.; Roy, A.; Alvior, A. M. B.; et al. Phenoage and longitudinal changes on transthoracic echocardiography in Alström syndrome: a disease of accelerated ageing? Geroscience 2024, 46, 1989-99.
9. Chang, O. D.; Meier, H. C. S.; Maguire-Jack, K.; Davis-Kean, P.; Mitchell, C. Childhood maltreatment and longitudinal epigenetic aging: NIMHD Social Epigenomics Program. JAMA. Netw. Open. 2024, 7, e2421877.
10. Harris, K. M.; Levitt, B.; Gaydosh, L.; et al. Sociodemographic and lifestyle factors and epigenetic aging in US young adults: NIMHD Social Epigenomics Program. JAMA. Netw. Open. 2024, 7, e2427889.
11. Engvig A, Kalleberg KT, Westlye LT, Leonardsen EH; Alzheimer’s Disease Neuroimaging Initiative Consortium. Complementary value of molecular, phenotypic, and functional aging biomarkers in dementia prediction. Geroscience. 2025, 47, 2099-118.
12. Nannini, D. R.; Cortese, R.; VonTungeln, C.; Hildebrandt, G. C. Chemotherapy-induced acceleration of DNA methylation-based biological age in breast cancer. Epigenetics 2024, 19, 2360160.
13. Arge, L. A.; Lee, Y.; Skåra, K. H.; et al. Epigenetic aging and fecundability: the Norwegian Mother, Father and Child Cohort Study. Hum. Reprod. 2024, 39, 2806-15.
14. Nagata, M.; Komaki, S.; Nishida, Y.; et al. Influence of physical activity on the epigenetic clock: evidence from a Japanese cross-sectional study. Clin. Epigenetics. 2024, 16, 142.
15. Mendy, A.; Mersha, T. B. Epigenetic age acceleration and mortality risk prediction in U.S. adults. medRxiv. 2024.
16. Beydoun, M. A.; Beydoun, H. A.; Ashe, J.; et al. Relationships of depression and antidepressant use with epigenetic age acceleration and all-cause mortality among postmenopausal women. Aging 2024, 16, 8446-71.
17. Aronov, A.; Pan, Y.; Sun, X.; Susztak, K.; Lash, J.; Kelly, T. N. Abstract P413: epigenetic age acceleration measures predict cardiovascular outcomes in diabetic kidney disease. Circulation. 2024, 149.
18. Freilich, C. D.; Markon, K. E.; Cole, S. W.; Krueger, R. F. Loneliness, epigenetic age acceleration, and chronic health conditions. Psychol. Aging. 2024, 39, 337-49.
19. Jain, P. N.; Zhuang, B.; Whitehead, J.; Kobor, M. S.; Checchia, P. Abstract 17447: Effects of inflammatory biomarkers on epigenetic age acceleration in adult congenital heart disease. Circulation. 2023, 148.
20. Bozack, A. K.; Boileau, P.; Hubbard, A. E.; et al. The impact of prenatal and early-life arsenic exposure on epigenetic age acceleration among adults in Northern Chile. Environ. Epigenet. 2022, 8, dvac014.
21. Lee, D. W.; Lim, Y. H.; Choi, Y. J.; et al. Prenatal and early-life air pollutant exposure and epigenetic aging acceleration. Ecotoxicol. Environ. Saf. 2024, 283, 116823.
22. Ni, W.; Nikolaou, N.; Ward-Caviness, C. K.; et al. Associations between medium- and long-term exposure to air temperature and epigenetic age acceleration. Environ. Int. 2023, 178, 108109.
23. America’s Children and the Environment. Phthalates. 2017. https://www.epa.gov/sites/default/files/2017-08/documents/phthalates_updates_live_file_508_0.pdf. (accessed 15 Aug 2025).
24. Liu, Y.; Wu, N.; Xu, R.; Li, Z.; Xu, X.; Liu, S. Phthalates released from microplastics can’t be ignored: sources, fate, ecological risks, and human exposure risks. TrAC. Trends. Anal. Chem. 2024, 179, 117870.
25. Touhouche, S.; Guenifed, A.; Yaker, N. D.; Khelfi, A. Phthalates and reproduction functions of woman: Real effects or myths? Toxicol. Anal. Clin. 2024, 36, 109-30.
26. Lee, G.; Lee, J.; Park, N. Y.; et al. Exposure to phthalates and alternative plasticizers in patients with impaired kidney function in Korea: temporal trend during 2011-2020 and its association with chronic kidney disease. Environ. Sci. Technol. 2024, 58, 19128-40.
27. Baker, B. H.; Melough, M. M.; Paquette, A. G.; et al. Ultra-processed and fast food consumption, exposure to phthalates during pregnancy, and socioeconomic disparities in phthalate exposures. Environ. Int. 2024, 183, 108427.
28. Verstraete, S.; Vanhorebeek, I.; Covaci, A.; et al. Circulating phthalates during critical illness in children are associated with long-term attention deficit: a study of a development and a validation cohort. Intensive. Care. Med. 2016, 42, 379-92.
29. LaRocca, J.; Binder, A. M.; McElrath, T. F.; Michels, K. B. First-trimester urine concentrations of phthalate metabolites and phenols and placenta miRNA expression in a cohort of U.S. women. Environ. Health. Perspect. 2016, 124, 380-7.
30. Kim, J. I.; Kim, J. W.; Shin, I.; Kim, B. N. Interaction of DRD4 methylation and phthalate metabolites affects continuous performance test performance in ADHD. J. Atten. Disord. 2021, 25, 161-70.
31. Nowak, K.; Oluwayiose, O. A.; Houle, E.; et al. Urinary concentrations of phthalate and phthalate alternative metabolites and sperm DNA methylation: a multi-cohort and meta-analysis of men in preconception studies. Environ. Int. 2024, 192, 109049.
32. Oluwayiose, O. A.; Houle, E.; Wu, H.; et al. Urinary phthalate metabolites and their mixtures are associated with advanced sperm epigenetic aging in a general population. Environ. Res. 2022, 214, 114115.
33. Li, Q.; Yao, J.; Duan, R.; Feng, T. Is there an association between serum 25-hydroxyvitamin D concentrations and obstructive sleep apnoea? A cross-sectional analysis of NHANES 2007-2008 data. BMJ. Open. 2024, 14, e085080.
34. Matabuena, M.; Petersen, A. Distributional data analysis of accelerometer data from the NHANES database using nonparametric survey regression models. J. R. Stat. Soc. Ser. C. Appl. Stat. 2023, 72, 294-313.
35. Song, G.; Yang, C.; Qu, Z.; Lin, X.; Liu, M.; Wang, Y. Association between seropositivity for toxocariasis and cognitive functioning in older adults: an analysis of cross-sectional data from the US National Health and Nutrition Examination Survey (NHANES), 2011-2014. BMJ. Open. 2023, 13, e068974.
36. Phthalates, phytoestrogens & PAHs - urine PHPYPA urinary phthalates (PHPYPA) (1999-2000 data documentation, codebook, and frequencies). https://wwwn.cdc.gov/Nchs/Data/Nhanes/Public/1999/DataFiles/PHPYPA.htm. (accessed 15 Aug 2025).
37. National health and nutrition examination survey. 2001-2002 data documentation, codebook, and frequencies. Phthalates, phytoestrogens & PAHs - urine (PHPYPA_B). 2005. https://wwwn.cdc.gov/Nchs/Data/Nhanes/Public/2001/DataFiles/PHPYPA_B.htm. (accessed 15 Aug 2025).
38. Johnson, C. L.; Paulose-Ram, R.; Ogden, C. L.; et al. National health and nutrition examination survey: analytic guidelines, 1999-2010. Vital. Health. Stat. 2. 2013, 1-24.
39. Scinicariello, F.; Feroe, A. G.; Attanasio, R. Urinary phthalates and leukocyte telomere length: an analysis of NHANES 1999-2002. EBioMedicine 2016, 6, 96-102.
40. National health and nutrition examination survey. NHANES 1999-2002 DNA methylation array and epigenetic biomarkers. https://wwwn.cdc.gov/Nchs/Nhanes/DNAm/Default.aspx. (accessed 15 Aug 2025).
41. Hannum, G.; Guinney, J.; Zhao, L.; et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol. Cell. 2013, 49, 359-67.
42. Horvath, S.; Oshima, J.; Martin, G. M.; et al. Epigenetic clock for skin and blood cells applied to Hutchinson Gilford Progeria Syndrome and ex vivo studies. Aging 2018, 10, 1758-75.
43. Levine, M. E.; Lu, A. T.; Quach, A.; et al. An epigenetic biomarker of aging for lifespan and healthspan. Aging 2018, 10, 573-91.
44. Lu, A. T.; Quach, A.; Wilson, J. G.; et al. DNA methylation GrimAge strongly predicts lifespan and healthspan. Aging 2019, 11, 303-27.
45. Lu, A. T.; Binder, A. M.; Zhang, J.; et al. DNA methylation GrimAge version 2. Aging 2022, 14, 9484-549.
46. Muntner, P.; Hardy, S. T.; Fine, L. J.; et al. Trends in blood pressure control among US adults with hypertension, 1999-2000 to 2017-2018. JAMA 2020, 324, 1190-200.
47. Saint-Maurice, P. F.; Troiano, R. P.; Bassett, D. R. Jr.; et al. Association of daily step count and step intensity with mortality among US adults. JAMA 2020, 323, 1151-60.
48. Houseman, E. A.; Accomando, W. P.; Koestler, D. C.; et al. DNA methylation arrays as surrogate measures of cell mixture distribution. BMC. Bioinformatics. 2012, 13, 86.
49. NHANES. Laboratory procedure manual. https://wwwn.cdc.gov/nchs/data/nhanes/public/2001/labmethods/phpypa_b_met_phthalates.pdf. (accessed 15 Aug 2025).
50. Frederiksen, H.; Sørensen, K.; Mouritsen, A.; et al. High urinary phthalate concentration associated with delayed pubarche in girls. Int. J. Androl. 2012, 35, 216-26.
51. Chang, W. H.; Li, S. S.; Wu, M. H.; Pan, H. A.; Lee, C. C. Phthalates might interfere with testicular function by reducing testosterone and insulin-like factor 3 levels. Hum. Reprod. 2015, 30, 2658-70.
52. Sicińska, P.; Kik, K.; Bukowska, B. Human erythrocytes exposed to phthalates and their metabolites alter antioxidant enzyme activity and hemoglobin oxidation. Int. J. Mol. Sci. 2020, 21, 4480.
53. Andriollo-Sanchez, M.; Hininger-Favier, I.; Meunier, N.; et al. Age-related oxidative stress and antioxidant parameters in middle-aged and older European subjects: the ZENITH study. Eur. J. Clin. Nutr. 2005, 59 Suppl 2, S58-62.
54. Zhang, M.; Liu, C.; Yuan, X. Q.; et al. Oxidatively generated DNA damage mediates the associations of exposure to phthalates with uterine fibroids and endometriosis: findings from TREE cohort. Free. Radic. Biol. Med. 2023, 205, 69-76.
55. Yoon, J.; García-Esquinas, E.; Kim, J.; et al. Urinary phthalate metabolites and slow walking speed in the Korean Elderly Environmental Panel II Study. Environ. Health. Perspect. 2023, 131, 47005.
56. Bloom MS, Clark JM, Pearce JL, et al; ECHO-FGS study group. Impact of skin care products on phthalates and phthalate replacements in children: the ECHO-FGS. Environ. Health. Perspect. 2024, 132, 97001.
57. Zhang, Y.; Lyu, L.; Tao, Y.; Ju, H.; Chen, J. Health risks of phthalates: a review of immunotoxicity. Environ. Pollut. 2022, 313, 120173.
58. Niu, Z.; Chen, T.; Duan, Z.; et al. Associations of exposure to phthalate with serum uric acid and hyperuricemia risk, and the mediating role of systemic immune inflammation. Ecotoxicol. Environ. Saf. 2024, 287, 117269.