REFERENCES
1. Basso, C. G.; de Araújo-Ramos, A. T.; Martino-Andrade, A. J. Exposure to phthalates and female reproductive health: a literature review. Reprod. Toxicol. 2022, 109, 61-79.
2. Carwile, J. L.; Luu, H. T.; Bassett, L. S.; et al. Polycarbonate bottle use and urinary bisphenol A concentrations. Environ. Health. Perspect. 2009, 117, 1368-72.
3. Husøy, T.; Andreassen, M.; Hjertholm, H.; et al. The Norwegian biomonitoring study from the EU project EuroMix: levels of phenols and phthalates in 24-hour urine samples and exposure sources from food and personal care products. Environ. Int. 2019, 132, 105103.
4. Huang, S.; Li, Q.; Liu, H.; et al. Urinary monohydroxylated polycyclic aromatic hydrocarbons in the general population from 26 provincial capital cities in China: levels, influencing factors, and health risks. Environ. Int. 2022, 160, 107074.
5. Wittassek, M.; Koch, H. M.; Angerer, J.; Brüning, T. Assessing exposure to phthalates - the human biomonitoring approach. Mol. Nutr. Food. Res. 2011, 55, 7-31.
6. Aker, A. M.; Johns, L.; McElrath, T. F.; Cantonwine, D. E.; Mukherjee, B.; Meeker, J. D. Associations between maternal phenol and paraben urinary biomarkers and maternal hormones during pregnancy: a repeated measures study. Environ. Int. 2018, 113, 341-9.
7. Fisher, M.; MacPherson, S.; Braun, J. M.; et al. Paraben concentrations in maternal urine and breast milk and its association with personal care product use. Environ. Sci. Technol. 2017, 51, 4009-17.
8. Sathyanarayana, S.; Barrett, E.; Butts, S.; Wang, C.; Swan, S. H. Phthalate exposure and reproductive hormone concentrations in pregnancy. Reproduction 2014, 147, 401-9.
9. Bolden, A. L.; Rochester, J. R.; Schultz, K.; Kwiatkowski, C. F. Polycyclic aromatic hydrocarbons and female reproductive health: a scoping review. Reprod. Toxicol. 2017, 73, 61-74.
10. Hallberg, I.; Björvang, R. D.; Hadziosmanovic, N.; et al. Associations between lifestyle factors and levels of per- and polyfluoroalkyl substances (PFASs), phthalates and parabens in follicular fluid in women undergoing fertility treatment. J. Expo. Sci. Environ. Epidemiol. 2023, 33, 699-709.
11. Wei, M.; Chen, X.; Zhao, Y.; Cao, B.; Zhao, W. Effects of prenatal environmental exposures on the development of endometriosis in female offspring. Reprod. Sci. 2016, 23, 1129-38.
12. Zhou, B.; Yang, P.; Deng, Y. L.; Zeng, Q.; Lu, W. Q.; Mei, S. R. Prenatal exposure to bisphenol a and its analogues (bisphenol F and S) and ultrasound parameters of fetal growth. Chemosphere 2020, 246, 125805.
13. Peng, F.; Ji, W.; Zhu, F.; et al. A study on phthalate metabolites, bisphenol A and nonylphenol in the urine of Chinese women with unexplained recurrent spontaneous abortion. Environ. Res. 2016, 150, 622-8.
14. Aimuzi, R.; Huang, S.; Luo, K.; et al. Levels and health risks of urinary phthalate metabolites and the association between phthalate exposure and unexplained recurrent spontaneous abortion: a large case-control study from China. Environ. Res. 2022, 212, 113393.
15. Kandaraki, E.; Chatzigeorgiou, A.; Livadas, S.; et al. Endocrine disruptors and polycystic ovary syndrome (PCOS): elevated serum levels of bisphenol A in women with PCOS. J. Clin. Endocrinol. Metab. 2011, 96, E480-4.
16. Peinado, F. M.; Lendínez, I.; Sotelo, R.; et al. Association of urinary levels of bisphenols A, F, and S with endometriosis risk: preliminary results of the EndEA study. Int. J. Environ. Res. Public. Health. 2020, 17, 1194.
17. Pacyga, D. C.; Chiang, C.; Li, Z.; Strakovsky, R. S.; Ziv-Gal, A. Parabens and menopause-related health outcomes in midlife women: a pilot study. J. Womens. Health. 2022, 31, 1645-54.
18. Wieczorek, K.; Szczęsna, D.; Jurewicz, J. Environmental exposure to non-persistent endocrine disrupting chemicals and endometriosis: a systematic review. Int. J. Environ. Res. Public. Health. 2022, 19, 5608.
19. Ye, X.; Pan, W.; Li, C.; et al. Exposure to polycyclic aromatic hydrocarbons and risk for premature ovarian failure and reproductive hormones imbalance. J. Environ. Sci. 2020, 91, 1-9.
20. Malathi, A.; Balakrishnan, S.; Lakshimi, B. S. Correlation between estradiol levels on day of HCG trigger and the number of mature follicles, number of oocytes retrieved, and the number of mature oocytes (M2) after oocyte aspiration in ICSI cycles. Middle. East. Fertil. Soc. J. 2021, 26, 34.
21. Nagy, B.; Szekeres-Barthó, J.; Kovács, G. L.; et al. Key to life: physiological role and clinical implications of progesterone. Int. J. Mol. Sci. 2021, 22, 11039.
22. Chantalat, E.; Valera, M. C.; Vaysse, C.; et al. Estrogen receptors and endometriosis. Int. J. Mol. Sci. 2020, 21, 2815.
23. Yang, Y.; Liu, B.; Wu, G.; Yang, J. Exploration of the value of progesterone and progesterone/estradiol ratio on the hCG trigger day in predicting pregnancy outcomes of PCOS patients undergoing IVF/ICSI: a retrospective cohort study. Reprod. Biol. Endocrinol. 2021, 19, 184.
24. Sathyanarayana, S.; Butts, S.; Wang, C.; et al; TIDES Team. Early prenatal phthalate exposure, sex steroid hormones, and birth outcomes. J. Clin. Endocrinol. Metab. 2017, 102, 1870-8.
25. Yuan, Q.; Jin, K.; Zhou, X.; et al. Urinary polycyclic aromatic hydrocarbon metabolites are positively related to serum testosterone levels of males and serum estradiol levels of females among U.S. adults. Front. Endocrinol. 2022, 13, 1037098.
26. Mok-Lin, E.; Ehrlich, S.; Williams, P. L.; et al. Urinary bisphenol A concentrations and ovarian response among women undergoing IVF. Int. J. Androl. 2010, 33, 385-93.
27. Malakootian, M.; Chavoshani, A.; Hashemi, M.; et al. Concentrations of urinary parabens and reproductive hormones in Iranian women: exposure and risk assessment. Toxicol. Rep. 2022, 9, 1894-900.
28. Guth, M.; Pollock, T.; Fisher, M.; Arbuckle, T. E.; Bouchard, M. F. Concentrations of urinary parabens and reproductive hormones in girls 6-17 years living in Canada. Int. J. Hyg. Environ. Health. 2021, 231, 113633.
29. Panagiotou, E. M.; Ojasalo, V.; Damdimopoulou, P. Phthalates, ovarian function and fertility in adulthood. Best. Pract. Res. Clin. Endocrinol. Metab. 2021, 35, 101552.
30. Beck, A. L.; Rehfeld, A.; Mortensen, L. J.; et al. Ovarian follicular fluid levels of phthalates and benzophenones in relation to fertility outcomes. Environ. Int. 2024, 183, 108383.
31. Bellavia, A.; Zou, R.; Björvang, R. D.; et al. Association between chemical mixtures and female fertility in women undergoing assisted reproduction in Sweden and Estonia. Environ. Res. 2023, 216, 114447.
32. Bullach, A.; Trapphoff, T.; Zühlke, S.; Spiteller, M.; Dieterle, S. Impact of nonylphenols and polyhalogenated compounds in follicular fluid on the outcome of intracytoplasmic sperm injection. Reprod. Sci. 2021, 28, 2118-28.
33. Hoffmann-Dishon, N.; Barnett-Itzhaki, Z.; Zalko, D.; et al. Correction to: Endocrine-disrupting chemical concentrations in follicular fluid and follicular reproductive hormone levels. J. Assist. Reprod. Genet. 2024, 41, 1643.
34. Tian, T.; Hao, Y.; Wang, Y.; et al. Mixed and single effects of endocrine disrupting chemicals in follicular fluid on likelihood of diminished ovarian reserve: a case-control study. Chemosphere 2023, 330, 138727.
35. Zhang, S.; Gao, F.; Fu, M.; Zhang, Q.; Guan, J.; Shen, H. Reproductive toxicology of environmental endocrine-disrupting chemicals in women: a cohort study protocol. Front. Cell. Dev. Biol. 2024, 12, 1335028.
36. Petro, E. M.; Leroy, J. L.; Covaci, A.; et al. Endocrine-disrupting chemicals in human follicular fluid impair in vitro oocyte developmental competence. Hum. Reprod. 2012, 27, 1025-33.
37. GB 17378.2-2007. State standard of the People’s Republic of China. The specification for marine monitoring - Part 2: Data processing and quality control of analysis. https://openstd.samr.gov.cn/bzgk/gb/newGbInfo?hcno=2A832569DF947259C8793864F584618F&refer=outter. (accessed 7 May 2025).
38. Bobb, J. F.; Valeri, L.; Claus Henn, B.; et al. Bayesian kernel machine regression for estimating the health effects of multi-pollutant mixtures. Biostatistics 2015, 16, 493-508.
39. Shi, X.; Wang, W.; Feng, J.; Ma, X.; Xu, M.; Wang, C. Gender-specific abdominal fat distribution and insulin resistance associated with organophosphate esters and phthalate metabolites exposure. Environ. Pollut. 2024, 349, 123959.
40. Li, Y.; Xiao, N.; Liu, M.; et al. Dysregulation of steroid metabolome in follicular fluid links phthalate exposure to diminished ovarian reserve of childbearing-age women. Environ. Pollut. 2023, 330, 121730.
41. Li, X.; Zhong, Y.; He, W.; et al. Co-exposure and health risks of parabens, bisphenols, triclosan, phthalate metabolites and hydroxyl polycyclic aromatic hydrocarbons based on simultaneous detection in urine samples from guangzhou, south China. Environ. Pollut. 2021, 272, 115990.
42. Santos, P. M.; del Nogal Sánchez, M.; Pavón, J. L. P.; Cordero, B. M. Determination of polycyclic aromatic hydrocarbons in human biological samples: a critical review. TrAC. Trend. Anal. Chem. 2019, 113, 194-209.
43. Katsikantami, I.; Sifakis, S.; Tzatzarakis, M. N.; et al. A global assessment of phthalates burden and related links to health effects. Environ. Int. 2016, 97, 212-36.
44. Land, K. L.; Miller, F. G.; Fugate, A. C.; Hannon, P. R. The effects of endocrine-disrupting chemicals on ovarian- and ovulation-related fertility outcomes. Mol. Reprod. Dev. 2022, 89, 608-31.
45. Sanchis, Y.; Coscollà, C.; Yusà, V. Analysis of four parabens and bisphenols A, F, S in urine, using dilute and shoot and liquid chromatography coupled to mass spectrometry. Talanta 2019, 202, 42-50.
46. Kolatorova, L.; Vitku, J.; Hampl, R.; et al. Exposure to bisphenols and parabens during pregnancy and relations to steroid changes. Environ. Res. 2018, 163, 115-22.
47. Lin, M.; Tang, J.; Ma, S.; et al. Insights into biomonitoring of human exposure to polycyclic aromatic hydrocarbons with hair analysis: a case study in e-waste recycling area. Environ. Int. 2020, 136, 105432.
48. Sun, H.; Hou, J.; Zhou, Y.; et al. Dose-response relationship between urinary polycyclic aromatic hydrocarbons metabolites and urinary 8-hydroxy-2’-deoxyguanosine in a Chinese general population. Chemosphere 2017, 174, 506-14.
49. Teixeira, E. C.; Agudelo-Castañeda, D. M.; Mattiuzi, C. D. Contribution of polycyclic aromatic hydrocarbon (PAH) sources to the urban environment: a comparison of receptor models. Sci. Total. Environ. 2015, 538, 212-9.
50. Correa-de-Araujo, R.; Yoon, S. S. S. Clinical outcomes in high-risk pregnancies due to advanced maternal age. J. Womens. Health. 2021, 30, 160-7.
51. Nakamura, D.; Yanagiba, Y.; Duan, Z.; et al. Bisphenol A may cause testosterone reduction by adversely affecting both testis and pituitary systems similar to estradiol. Toxicol. Lett. 2010, 194, 16-25.
52. Yadav, S. K.; Bijalwan, V.; Yadav, S.; Sarkar, K.; Das, S.; Singh, D. P. Susceptibility of male reproductive system to bisphenol A, an endocrine disruptor: updates from epidemiological and experimental evidence. J. Biochem. Mol. Toxicol. 2023, 37, e23292.
53. Galloway, T.; Cipelli, R.; Guralnik, J.; et al. Daily bisphenol A excretion and associations with sex hormone concentrations: results from the InCHIANTI adult population study. Environ. Health. Perspect. 2010, 118, 1603-8.
54. Takeuchi, T.; Tsutsumi, O.; Ikezuki, Y.; Takai, Y.; Taketani, Y. Positive relationship between androgen and the endocrine disruptor, bisphenol A, in normal women and women with ovarian dysfunction. Endocr. J. 2004, 51, 165-9.
55. Shoorei, H.; Seify, M.; Talebi, S. F.; Majidpoor, J.; Dehaghi, Y. K.; Shokoohi, M. Different types of bisphenols alter ovarian steroidogenesis: special attention to BPA. Heliyon 2023, 9, e16848.
56. Cipriani, S.; Maseroli, E.; Vignozzi, L. Testosterone in females. In: Mulhall JP, Maggi M, Trost L, editors. Controversies in testosterone deficiency. Springer, Cham: 2021. pp. 81-105.
57. Perović, M.; Wugalter, K.; Einstein, G. Review of the effects of polycystic ovary syndrome on Cognition: looking beyond the androgen hypothesis. Front. Neuroendocrinol. 2022, 67, 101038.
58. Buck, G. M.; Sever, L. E.; Batt, R. E.; Mendola, P. Life-style factors and female infertility. Epidemiology 1997, 8, 435-41.
59. Hannon, P. R.; Flaws, J. A. The effects of phthalates on the ovary. Front. Endocrinol. 2015, 6, 8.
60. Zhang, T.; Li, L.; Qin, X. S.; et al. Di-(2-ethylhexyl) phthalate and bisphenol A exposure impairs mouse primordial follicle assembly in vitro. Environ. Mol. Mutagen. 2014, 55, 343-53.
61. Land, K. L.; Lane, M. E.; Fugate, A. C.; Hannon, P. R. Ovulation is inhibited by an environmentally relevant phthalate mixture in mouse antral follicles in vitro. Toxicol. Sci. 2021, 179, 195-205.
62. Panagopoulos, P.; Mavrogianni, D.; Christodoulaki, C.; et al. Effects of endocrine disrupting compounds on female fertility. Best. Pract. Res. Clin. Obstet. Gynaecol. 2023, 88, 102347.
63. Emori, M. M.; Drapkin, R. The hormonal composition of follicular fluid and its implications for ovarian cancer pathogenesis. Reprod. Biol. Endocrinol. 2014, 12, 60.
64. Ara, C.; Asmatullah,
65. Lovekamp-Swan, T.; Davis, B. J. Mechanisms of phthalate ester toxicity in the female reproductive system. Environ. Health. Perspect. 2003, 111, 139-45.
66. Basak, S.; Varma, S.; Duttaroy, A. K. Modulation of fetoplacental growth, development and reproductive function by endocrine disrupters. Front. Endocrinol. 2023, 14, 1215353.
67. Téteau, O.; Vitorino Carvalho, A.; Papillier, P.; et al. Bisphenol A and bisphenol S both disrupt ovine granulosa cell steroidogenesis but through different molecular pathways. J. Ovarian. Res. 2023, 16, 30.