REFERENCES

1. Antar, M.; Lyu, D.; Nazari, M.; Shah, A.; Zhou, X.; Smith, D. L. Biomass for a sustainable bioeconomy: an overview of world biomass production and utilization. Renew. Sustain. Energy. Rev. 2021, 139, 110691.

2. Jiang, K.; Xing, R.; Luo, Z.; et al. Pollutant emissions from biomass burning: a review on emission characteristics, environmental impacts, and research perspectives. Particuology 2024, 85, 296-309.

3. Karanasiou, A.; Alastuey, A.; Amato, F.; et al. Short-term health effects from outdoor exposure to biomass burning emissions: a review. Sci. Total. Environ. 2021, 781, 146739.

4. Doubleday, A.; Schulte, J.; Sheppard, L.; et al. Mortality associated with wildfire smoke exposure in Washington state, 2006-2017: a case-crossover study. Environ. Health. 2020, 19, 4.

5. DeFlorio-Barker, S.; Crooks, J.; Reyes, J.; Rappold, A. G. Cardiopulmonary effects of fine particulate matter exposure among older adults, during wildfire and non-wildfire periods, in the United States 2008-2010. Environ. Health. Perspect. 2019, 127, 37006.

6. Weichenthal, S.; Kulka, R.; Lavigne, E.; et al. Biomass burning as a source of ambient fine particulate air pollution and acute myocardial infarction. Epidemiology 2017, 28, 329-37.

7. Winter, P. M. Carbon monoxide poisoning. JAMA. 1976, 236, 1502.

8. Levy, R. J. Carbon monoxide pollution and neurodevelopment: a public health concern. Neurotoxicol. Teratol. 2015, 49, 31-40.

9. Goldstein, M. Carbon monoxide poisoning. J. Emerg. Nurs. 2008, 34, 538-42.

10. Chen, Z.; Liu, N.; Tang, H.; et al. Health effects of exposure to sulfur dioxide, nitrogen dioxide, ozone, and carbon monoxide between 1980 and 2019: a systematic review and meta-analysis. Indoor. Air. 2022, 32, e13170.

11. Chen, R.; Yin, P.; Meng, X.; et al. Associations between ambient nitrogen dioxide and daily cause-specific mortality: evidence from 272 Chinese cities. Epidemiology 2018, 29, 482-9.

12. Wang, L.; Liu, C.; Meng, X.; et al. Associations between short-term exposure to ambient sulfur dioxide and increased cause-specific mortality in 272 Chinese cities. Environ. Int. 2018, 117, 33-9.

13. McGraw, K. E.; Riggs, D. W.; Rai, S.; et al. Exposure to volatile organic compounds - acrolein, 1,3-butadiene, and crotonaldehyde - is associated with vascular dysfunction. Environ. Res. 2021, 196, 110903.

14. Kim, K. H.; Jahan, S. A.; Kabir, E.; Brown, R. J. A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environ. Int. 2013, 60, 71-80.

15. Xia, Z.; Duan, X.; Qiu, W.; et al. Health risk assessment on dietary exposure to polycyclic aromatic hydrocarbons (PAHs) in Taiyuan, China. Sci. Total. Environ. 2010, 408, 5331-7.

16. Tollefson, J. Soot a major contributor to climate change. Nature.2013.

17. Hay, W. W. Water vapor - the major greenhouse gas. In Experimenting on a small planet. Springer International Publishing: Cham; 2021. pp 477-90.

18. Etminan, M.; Myhre, G.; Highwood, E. J.; Shine, K. P. Radiative forcing of carbon dioxide, methane, and nitrous oxide: a significant revision of the methane radiative forcing. Geophys. Res. Lett. 2016, 43, 12614-23.

19. Zheng, M.; Song, D.; Zhang, D.; Cao, Y.; Fan, H. Using sulfur isotopes to constrain the sources of sulfate in PM2.5 during the winter in Jiaozuo City. Atmos. Environ. 2024, 332, 120618.

20. IEA. SDG7: data and projections. https://www.iea.org/reports/sdg7-data-and-projections. (accessed 2025-02-13).

21. Gibb, K.; Beckman, S.; Vergara, X. P.; Heinzerling, A.; Harrison, R. Extreme heat and occupational health risks. Annu. Rev. Public. Health. 2024, 45, 315-35.

22. Sacks, J. D.; Migliaccio, C. T.; Reid, C. E.; Montrose, L. Shifting the conversation on wildland fire smoke exposures: more smoke within and across years requires a new approach to inform public health action. ACS. EST. Air.2025.

23. Bui, H. X.; Li, Y.; Dommenget, D. Controlling factors of wildfires in Australia and their changes under global warming. Environ. Res. Lett. 2024, 19, 094030.

24. You, X. Surge in extreme forest fires fuels global emissions. Nature. 2023.

25. Wildfires are worsening air quality in the United States. Nature. 2023.

26. Aguilera, R.; Corringham, T.; Gershunov, A.; Benmarhnia, T. Wildfire smoke impacts respiratory health more than fine particles from other sources: observational evidence from Southern California. Nat. Commun. 2021, 12, 1493.

27. Ye, T.; Xu, R.; Yue, X.; et al. Short-term exposure to wildfire-related PM2.5 increases mortality risks and burdens in Brazil. Nat. Commun. 2022, 13, 7651.

28. Park, H.; Jeong, S.; Peñuelas, J. Accelerated rate of vegetation green-up related to warming at northern high latitudes. Glob. Chang. Biol. 2020, 26, 6190-202.

29. Mishra, S.; Tripathi, S. N.; Kanawade, V. P.; et al. Rapid night-time nanoparticle growth in Delhi driven by biomass-burning emissions. Nat. Geosci. 2023, 16, 224-30.

30. Khodmanee, S.; Amnuaylojaroen, T. Impact of biomass burning on ozone, carbon monoxide, and nitrogen dioxide in Northern Thailand. Front. Environ. Sci. 2021, 9, 641877.

31. Huzar, T. F.; George, T.; Cross, J. M. Carbon monoxide and cyanide toxicity: etiology, pathophysiology and treatment in inhalation injury. Expert. Rev. Respir. Med. 2013, 7, 159-70.

32. Yadav, I. C.; Devi, N. L. Biomass burning, regional air quality, and climate change. encyclopedia of environmental health. Elsevier; 2019. pp. 386-91.

33. Raju, S.; Siddharthan, T.; McCormack, M. C. Indoor air pollution and respiratory health. Clin. Chest. Med. 2020, 41, 825-43.

34. Zhai, Z.; Yates, A. P.; Duanmu, L.; Wang, Z. An evaluation and model of the Chinese Kang system to improve indoor thermal comfort in northeast rural China - Part-1: model development. Renew. Energy. 2015, 84, 3-11.

35. Bantu, A. A.; Nuwagaba, G.; Kizza, S.; Turinayo, Y. K. Design of an improved cooking stove using high density heated rocks and heat retaining techniques. J. Renew. Energy. 2018, 2018, 1-9.

36. Men, Y.; Li, Y.; Luo, Z.; et al. Interpreting highly variable indoor PM2.5 in rural North China using machine learning. Environ. Sci. Technol. 2023, 57, 18183-92.

37. Heating with wood: a problem for health and climate. 2016. https://www.clean-heat.eu/en/actions/info-material/download/background-paper-residential-wood-burning-3.html. (accessed 2025-02-13).

38. Luo, Z.; Zhang, L.; Li, G.; et al. Evaluating co-emissions into indoor and outdoor air of EC, OC, and BC from in-home biomass burning. Atmos. Res. 2021, 248, 105247.

39. Rooney, B.; Zhao, R.; Wang, Y.; et al. Impacts of household sources on air pollution at village and regional scales in India. Atmos. Chem. Phys. 2019, 19, 7719-42.

40. Balmes, J. R. Household air pollution from domestic combustion of solid fuels and health. J. Allergy. Clin. Immunol. 2019, 143, 1979-87.

41. Ali, M. U.; Yu, Y.; Yousaf, B.; et al. Health impacts of indoor air pollution from household solid fuel on children and women. J. Hazard. Mater. 2021, 416, 126127.

Journal of Environmental Exposure Assessment
ISSN 2771-5949 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/