REFERENCES
1. Guan WJ, Zheng XY, Chung KF, Zhong NS. Impact of air pollution on the burden of chronic respiratory diseases in China: time for urgent action. Lancet. 2016;388:1939-51.
2. Shaddick G, Thomas ML, Mudu P, Ruggeri G, Gumy S. Half the world’s population are exposed to increasing air pollution. npj Clim Atmos Sci. 2020;3:124.
3. Bai X, Chen H, Oliver BG. The health effects of traffic-related air pollution: a review focused the health effects of going green. Chemosphere. 2022;289:133082.
4. GBD 2021 Risk Factors Collaborators. Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990-2021: a systematic analysis for the Global Burden of Disease Study 2021. Lancet. 2024;403:2162-203.
5. Costa LG, Cole TB, Coburn J, Chang YC, Dao K, Roqué PJ. Neurotoxicity of traffic-related air pollution. Neurotoxicology. 2017;59:133-9.
6. Harrison RM, Allan J, Carruthers D, et al. Non-exhaust vehicle emissions of particulate matter and VOC from road traffic: a review. Atmos Environ. 2021;262:118592.
7. Haddad P, Kutlar Joss M, Weuve J, et al. Long-term exposure to traffic-related air pollution and stroke: a systematic review and meta-analysis. Int J Hyg Environ Health. 2023;247:114079.
8. Aryal A, Harmon AC, Dugas TR. Particulate matter air pollutants and cardiovascular disease: strategies for intervention. Pharmacol Ther. 2021;223:107890.
10. Xing YF, Xu YH, Shi MH, Lian YX. The impact of PM2.5 on the human respiratory system. J Thorac Dis. 2016;8:E69-74.
11. Cacciottolo M, Wang X, Driscoll I, et al. Particulate air pollutants, APOE alleles and their contributions to cognitive impairment in older women and to amyloidogenesis in experimental models. Transl Psychiat. 2017;7:e1022.
12. Chen H, Kwong JC, Copes R, et al. Living near major roads and the incidence of dementia, Parkinson’s disease, and multiple sclerosis: a population-based cohort study. Lancet. 2017;389:718-26.
13. Mann JK, Lutzker L, Holm SM, et al. Traffic-related air pollution is associated with glucose dysregulation, blood pressure, and oxidative stress in children. Environ Res. 2021;195:110870.
14. Markevych I, Wolf K, Hampel R, et al. Air pollution and liver enzymes. Epidemiology. 2013;24:934-5.
15. Qiu W, Zhou Y, He H, et al. Short-term effects of air pollution on liver function among urban adults in China. Atmos Environ. 2021;245:118011.
16. Kim HJ, Min JY, Seo YS, Min KB. Association of ambient air pollution with increased liver enzymes in Korean adults. Int J Environ Res Public Health. 2019;16:1213.
17. Kim KN, Lee H, Kim JH, Jung K, Lim YH, Hong YC. Physical activity- and alcohol-dependent association between air pollution exposure and elevated liver enzyme levels: an elderly panel study. J Prev Med Public Health. 2015;48:151-69.
18. Tan C, Wang Y, Lin M, et al. Long-term high air pollution exposure induced metabolic adaptations in traffic policemen. Environ Toxicol Pharmacol. 2018;58:156-62.
19. Li Q, Liu H, Alattar M, et al. The preferential accumulation of heavy metals in different tissues following frequent respiratory exposure to PM2.5 in rats. Sci Rep. 2015;5:16936.
20. Brook RD, Brook JR, Rajagopalan S. Air pollution: the “Heart” of the problem. Curr Hypertens Rep. 2003;5:32-9.
21. Yu Y, Paul K, Arah OA, et al. Air pollution, noise exposure, and metabolic syndrome - a cohort study in elderly Mexican-Americans in Sacramento area. Environ Int. 2020;134:105269.
22. Matthiessen C, Lucht S, Hennig F, et al; Heinz Nixdorf Recall Study Investigative Group. Long-term exposure to airborne particulate matter and NO2 and prevalent and incident metabolic syndrome - results from the Heinz Nixdorf Recall Study. Environ Int 2018;116:74-82.
23. Voss S, Schneider A, Huth C, et al. ENVINT-D-20-01309: long-term exposure to air pollution, road traffic noise, residential greenness, and prevalent and incident metabolic syndrome: results from the population-based KORA F4/FF4 cohort in Augsburg, Germany. Environ Int. 2021;147:106364.
24. Chen J, Wu L, Yang G, et al. The influence of PM2.5 exposure on non-alcoholic fatty liver disease. Life Sci. 2021;270:119135.
25. Sun Q, Yue P, Deiuliis JA, et al. Ambient air pollution exaggerates adipose inflammation and insulin resistance in a mouse model of diet-induced obesity. Circulation. 2009;119:538-46.
26. Qiu YN, Wang GH, Zhou F, et al. PM2.5 induces liver fibrosis via triggering ROS-mediated mitophagy. Ecotoxicol Environ Saf. 2019;167:178-87.
27. Pedersen M, Andersen ZJ, Stafoggia M, et al. Ambient air pollution and primary liver cancer incidence in four European cohorts within the ESCAPE project. Environ Res. 2017;154:226-33.
28. Zheng Z, Xu X, Zhang X, et al. Exposure to ambient particulate matter induces a NASH-like phenotype and impairs hepatic glucose metabolism in an animal model. J Hepatol. 2013;58:148-54.
29. Laing S, Wang G, Briazova T, et al. Airborne particulate matter selectively activates endoplasmic reticulum stress response in the lung and liver tissues. Am J Physiol Cell Physiol. 2010;299:C736-49.
30. Dybdahl M, Risom L, Møller P, et al. DNA adduct formation and oxidative stress in colon and liver of Big Blue rats after dietary exposure to diesel particles. Carcinogenesis. 2003;24:1759-66.
31. McGill MR. The past and present of serum aminotransferases and the future of liver injury biomarkers. EXCLI J. 2016;15:817-28.
32. Lioudaki E, Ganotakis ES, Mikhailidis DP. Liver enzymes: potential cardiovascular risk markers? Curr Pharm Des. 2011;17:3632-43.
33. Westerbacka J, Cornér A, Tiikkainen M, et al. Women and men have similar amounts of liver and intra-abdominal fat, despite more subcutaneous fat in women: implications for sex differences in markers of cardiovascular risk. Diabetologia. 2004;47:1360-9.
34. Baou K, Vlachopoulos C, Manesis E, Archimandritis A, Stefanadis C. Non-alcoholic fatty liver and cardiovascular disease: an emerging relationship. Hellenic J Cardiol. 2007;48:37-41.
35. Tomao E, Baccolo TP, Sacchi L, DE Sio S, Tomei F. Harm to the liver among employees of the Municipal Police Force. Int J Environ Health Res. 2002;12:145-51.
36. Pan WC, Wu CD, Chen MJ, et al. Fine particle pollution, alanine transaminase, and liver cancer: a Taiwanese prospective cohort study (REVEAL-HBV). J Natl Cancer Inst. 2016;108:djv341.
37. Wirsching J, Nagel G, Tsai MY, et al. Exposure to ambient air pollution and elevated blood levels of gamma-glutamyl transferase in a large Austrian cohort. Sci Total Environ. 2023;883:163658.
38. Pejhan A, Agah J, Adli A, et al. Exposure to air pollution during pregnancy and newborn liver function. Chemosphere. 2019;226:447-53.
39. Zhang Z, Guo C, Chang LY, et al. Long-term exposure to ambient fine particulate matter and liver enzymes in adults: a cross-sectional study in Taiwan. Occup Environ Med. 2019;76:488-94.
40. Dales R, Mitchell K, Lukina A, Brook J, Karthikeyan S, Cakmak S. Does ambient air pollution influence biochemical markers of liver injury? Findings of a cross-sectional population-based survey. Chemosphere. 2023;340:139859.
41. Montes JOA, Villarreal AB, Piña BGB, et al. Short-term ambient air ozone exposure and components of metabolic syndrome in a cohort of mexican obese adolescents. Int J Environ Res Public Health. 2023;20:4495.
42. Vander Hoorn S, Murray K, Nedkoff L, et al. Long-term exposure to outdoor air pollution and risk factors for cardiovascular disease within a cohort of older men in Perth. PLoS One. 2021;16:e0248931.
43. Tomao E, Tiziana PB, Rosati V, Marcellini L, Tomei F. The effects of air pollution on the lipid balance of traffic police personnel. Ann Saudi Med. 2002;22:287-90.
44. Yang BY, Qian ZM, Li S, et al. Long-term exposure to ambient air pollution (including PM1) and metabolic syndrome: the 33 Communities Chinese Health Study (33CCHS). Environ Res. 2018;164:204-11.
45. Wei Y, Zhang JJ, Li Z, et al. Chronic exposure to air pollution particles increases the risk of obesity and metabolic syndrome: findings from a natural experiment in Beijing. FASEB J. 2016;30:2115-22.
46. Robinson MW, Harmon C, O’Farrelly C. Liver immunology and its role in inflammation and homeostasis. Cell Mol Immunol. 2016;13:267-76.
47. Romieu I, Castro-Giner F, Kunzli N, Sunyer J. Air pollution, oxidative stress and dietary supplementation: a review. Eur Respir J. 2008;31:179-97.
48. Zhao J, Gao Z, Tian Z, et al. The biological effects of individual-level PM(2.5) exposure on systemic immunity and inflammatory response in traffic policemen. Occup Environ Med. 2013;70:426-31.
49. Kim JW, Park S, Lim CW, Lee K, Kim B. The role of air pollutants in initiating liver disease. Toxicol Res. 2014;30:65-70.
50. Tan HH, Fiel MI, Sun Q, et al. Kupffer cell activation by ambient air particulate matter exposure may exacerbate non-alcoholic fatty liver disease. J Immunotoxicol. 2009;6:266-75.
51. Tomaru M, Takano H, Inoue K, et al. Pulmonary exposure to diesel exhaust particles enhances fatty change of the liver in obese diabetic mice. Int J Mol Med. 2007;19:17-22.
52. Ginès P, Krag A, Abraldes JG, Solà E, Fabrellas N, Kamath PS. Liver cirrhosis. Lancet. 2021;398:1359-76.
53. GBD 2017 Cirrhosis Collaborators. The global, regional, and national burden of cirrhosis by cause in 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol Hepatol. 2020;5:245-66.
54. Devarbhavi H, Asrani SK, Arab JP, Nartey YA, Pose E, Kamath PS. Global burden of liver disease: 2023 update. J Hepatol. 2023;79:516-37.
55. Xiao J, Wang F, Wong NK, et al. Global liver disease burdens and research trends: analysis from a Chinese perspective. J Hepatol. 2019;71:212-21.