REFERENCES
1. Yu G, Bu Q, Cao Z, et al. Brominated flame retardants (BFRs): a review on environmental contamination in China. Chemosphere 2016;150:479-90.
2. Covaci A, Harrad S, Abdallah MA, et al. Novel brominated flame retardants: a review of their analysis, environmental fate and behaviour. Environ Int 2011;37:532-56.
3. Chen D, Kannan K, Tan H, et al. Bisphenol analogues other than BPA: environmental occurrence, human exposure, and toxicity-a review. Environ Sci Technol 2016;50:5438-53.
4. der Veen I, de Boer J. Phosphorus flame retardants: properties, production, environmental occurrence, toxicity and analysis. Chemosphere 2012;88:1119-53.
5. Li Q, Yang K, Li K, et al. New halogenated flame retardants in the atmosphere of nine urban areas in China: Pollution characteristics, source analysis and variation trends. Environ Pollut 2017;224:679-88.
6. Ezechiáš M, Covino S, Cajthaml T. Ecotoxicity and biodegradability of new brominated flame retardants: a review. Ecotoxicol Environ Saf 2014;110:153-67.
7. Chen SJ, Feng AH, He MJ, Chen MY, Luo XJ, Mai BX. Current levels and composition profiles of PBDEs and alternative flame retardants in surface sediments from the Pearl River Delta, southern China: comparison with historical data. Sci Total Environ 2013;444:205-11.
8. Sunday OE, Bin H, Guanghua M, et al. Review of the environmental occurrence, analytical techniques, degradation and toxicity of TBBPA and its derivatives. Environ Res 2022;206:112594.
9. Xiong P, Yan X, Zhu Q, et al. A Review of environmental occurrence, fate, and toxicity of novel brominated flame retardants. Environ Sci Technol 2019;53:13551-69.
10. Ceresana. Marktstudie kunststoff-additive, 2019. Available from: https://www.ceresana.com/de/marktstudien/chemikalien/kunststoff-additive/ceresana-marktstudie-kunststoff-additive.html [Last accessed on 26 Apr 2023].
11. Hou R, Lin L, Li H, et al. Occurrence, bioaccumulation, fate, and risk assessment of novel brominated flame retardants (NBFRs) in aquatic environments - a critical review. Water Res 2021;198:117168.
12. Reemtsma T, Quintana JB, Rodil R, Garcı´a-lópez M, Rodrı´guez I. Organophosphorus flame retardants and plasticizers in water and air I. Occurrence and fate. TRAC-Trend Anal Chem 2008;27:727-37.
13. Chen Y, Liu Q, Ma J, Yang S, Wu Y, An Y. A review on organophosphate flame retardants in indoor dust from China: Implications for human exposure. Chemosphere 2020;260:127633.
14. Zuiderveen EAR, Slootweg JC, de Boer J. Novel brominated flame retardants - a review of their occurrence in indoor air, dust, consumer goods and food. Chemosphere 2020;255:126816.
15. Möller A, Xie Z, Cai M, et al. Polybrominated diphenyl ethers
16. Kung H, Hsieh Y, Huang B, Cheruiyot NK, Chang-chien G. An overview: organophosphate flame retardants in the atmosphere. Aerosol Air Qual Res 2022;22:220148.
17. Li WL, Ma WL, Zhang ZF, et al. Occurrence and Source Effect of Novel Brominated Flame Retardants (NBFRs) in soils from five asian countries and their relationship with PBDEs. Environ Sci Technol 2017;51:11126-35.
18. McGrath TJ, Ball AS, Clarke BO. Critical review of soil contamination by polybrominated diphenyl ethers (PBDEs) and novel brominated flame retardants (NBFRs); concentrations, sources and congener profiles. Environ Pollut 2017;230:741-57.
19. Law K, Halldorson T, Danell R, et al. Bioaccumulation and trophic transfer of some brominated flame retardants in a Lake Winnipeg (Canada) food web. Environ Toxicol Chem 2006;25:2177-86.
20. He MJ, Luo XJ, Chen MY, Sun YX, Chen SJ, Mai BX. Bioaccumulation of polybrominated diphenyl ethers and decabromodiphenyl ethane in fish from a river system in a highly industrialized area, South China. Sci Total Environ 2012;419:109-15.
21. Zhang L, Lu L, Zhu W, et al. Organophosphorus flame retardants (OPFRs) in the seawater and sediments of the Qinzhou Bay, Northern Beibu Gulf: occurrence, distribution, and ecological risks. Mar Pollut Bull 2021;168:112368.
22. Chen M, Gan Z, Qu B, Chen S, Dai Y, Bao X. Temporal and seasonal variation and ecological risk evaluation of flame retardants in seawater and sediments from Bohai Bay near Tianjin, China during 2014 to 2017. Mar Pollut Bull 2019;146:874-83.
23. Gao X, Lin Y, Li J, Xu Y, Qian Z, Lin W. Spatial pattern analysis reveals multiple sources of organophosphorus flame retardants in coastal waters. J Hazard Mater 2021;417:125882.
24. Hou L, Jiang J, Gan Z, et al. Spatial distribution of organophosphorus and brominated flame retardants in surface water, sediment, groundwater, and wild fish in Chengdu, China. Arch Environ Contam Toxicol 2019;77:279-90.
25. Shi T, Chen SJ, Luo XJ, et al. Occurrence of brominated flame retardants other than polybrominated diphenyl ethers in environmental and biota samples from southern China. Chemosphere 2009;74:910-6.
26. Rodil R, Quintana JB, López-Mahía P, Muniategui-Lorenzo S, Prada-Rodríguez D. Multi-residue analytical method for the determination of emerging pollutants in water by solid-phase extraction and liquid chromatography-tandem mass spectrometry. J Chromatogr A 2009;1216:2958-69.
27. Martínez-Carballo E, González-Barreiro C, Sitka A, Scharf S, Gans O. Determination of selected organophosphate esters in the aquatic environment of Austria. Sci Total Environ 2007;388:290-9.
28. Woudneh MB, Benskin JP, Wang G, Grace R, Hamilton MC, Cosgrove JR. Quantitative determination of 13 organophosphorous flame retardants and plasticizers in a wastewater treatment system by high performance liquid chromatography tandem mass spectrometry. J Chromatogr A 2015;1400:149-55.
29. Shi Y, Gao L, Li W, Wang Y, Liu J, Cai Y. Occurrence, distribution and seasonal variation of organophosphate flame retardants and plasticizers in urban surface water in Beijing, China. Environ Pollut 2016;209:1-10.
30. Xu L, Hu Q, Liu J, et al. Occurrence of organophosphate esters and their diesters degradation products in industrial wastewater treatment plants in China: Implication for the usage and potential degradation during production processing. Environ Pollut 2019;250:559-66.
31. Greaves AK, Su G, Letcher RJ. Environmentally relevant organophosphate triesters in herring gulls:
32. Kim JW, Isobe T, Chang KH, et al. Levels and distribution of organophosphorus flame retardants and plasticizers in fishes from Manila Bay, the Philippines. Environ Pollut 2011;159:3653-9.
33. Sundkvist AM, Olofsson U, Haglund P. Organophosphorus flame retardants and plasticizers in marine and fresh water biota and in human milk. J Environ Monit 2010;12:943-51.
34. Su G, Letcher RJ, Moore JN, et al. Spatial and temporal comparisons of legacy and emerging flame retardants in herring gull eggs from colonies spanning the Laurentian Great Lakes of Canada and United States. Environ Res 2015;142:720-30.
35. Sala B, Giménez J, de Stephanis R, Barceló D, Eljarrat E. First determination of high levels of organophosphorus flame retardants and plasticizers in dolphins from Southern European waters. Environ Res 2019;172:289-95.
36. McGoldrick DJ, Letcher RJ, Barresi E, et al. Organophosphate flame retardants and organosiloxanes in predatory freshwater fish from locations across Canada. Environ Pollut 2014;193:254-61.
37. Giulivo M, Capri E, Kalogianni E, et al. Occurrence of halogenated and organophosphate flame retardants in sediment and fish samples from three European river basins. Sci Total Environ 2017;586:782-91.
38. Hou R, Liu C, Gao X, Xu Y, Zha J, Wang Z. Accumulation and distribution of organophosphate flame retardants (PFRs) and their di-alkyl phosphates (DAPs) metabolites in different freshwater fish from locations around Beijing, China. Environ Pollut 2017;229:548-56.
39. Wang X, Zhong W, Xiao B, et al. Bioavailability and biomagnification of organophosphate esters in the food web of Taihu Lake, China: Impacts of chemical properties and metabolism. Environ Int 2019;125:25-32.
40. Bekele TG, Zhao H, Wang Y, Jiang J, Tan F. Measurement and prediction of bioconcentration factors of organophosphate flame retardants in common carp (Cyprinus carpio). Ecotoxicol Environ Saf 2018;166:270-6.
41. Zheng G, Wan Y, Shi S, et al. Trophodynamics of emerging brominated flame retardants in the aquatic food web of lake taihu: relationship with organism metabolism across trophic levels. Environ Sci Technol 2018;52:4632-40.
42. Liu YE, Tang B, Liu Y, et al. Occurrence, biomagnification and maternal transfer of legacy and emerging organophosphorus flame retardants and plasticizers in water snake from an e-waste site. Environ Int 2019;133:105240.
43. Liu AF, Qu GB, Yu M, Liu YW, Shi JB, Jiang GB. Tetrabromobisphenol-A/S and nine novel analogs in biological samples from the chinese bohai sea: implications for trophic transfer. Environ Sci Technol 2016;50:4203-11.
44. Hou R, Huang Q, Pan Y, et al. Novel brominated flame retardants (NBFRs) in a Tropical marine food web from the south china sea: the influence of hydrophobicity and biotransformation on structure-related trophodynamics. Environ Sci Technol 2022;56:3147-58.
45. Bekele TG, Zhao H, Wang Q, Chen J. Bioaccumulation and Trophic Transfer of Emerging Organophosphate Flame Retardants in the Marine Food Webs of Laizhou Bay, North China. Environ Sci Technol 2019;53:13417-26.
46. Ding Y, Han M, Wu Z, et al. Bioaccumulation and trophic transfer of organophosphate esters in tropical marine food web, South China Sea. Environ Int 2020;143:105919.
47. Giraudo M, Douville M, Houde M. Chronic toxicity evaluation of the flame retardant tris (2-butoxyethyl) phosphate (TBOEP) using Daphnia magna transcriptomic response. Chemosphere 2015;132:159-65.
48. Yan S, Wu H, Qin J, Zha J, Wang Z. Halogen-free organophosphorus flame retardants caused oxidative stress and multixenobiotic resistance in Asian freshwater clams (Corbicula fluminea). Environ Pollut 2017;225:559-68.
49. Xu Q, Wu D, Dang Y, Yu L, Liu C, Wang J. Reproduction impairment and endocrine disruption in adult zebrafish (Danio rerio) after waterborne exposure to TBOEP. Aquat Toxicol 2017;182:163-71.
50. Chen R, Hong X, Yan S, Zha J. Three organophosphate flame retardants (OPFRs) reduce sperm quality in Chinese rare minnows (Gobiocypris rarus). Environ Pollut 2020;263:114525.
51. Liu Y, Wu D, Xu Q, Yu L, Liu C, Wang J. Acute exposure to tris (2-butoxyethyl) phosphate (TBOEP) affects growth and development of embryo-larval zebrafish. Aquat Toxicol 2017;191:17-24.
52. Ma Z, Tang S, Su G, et al. Effects of tris (2-butoxyethyl) phosphate (TBOEP) on endocrine axes during development of early life stages of zebrafish (Danio rerio). Chemosphere 2016;144:1920-7.
53. Tran CM, Lee H, Lee B, Ra JS, Kim KT. Effects of the chorion on the developmental toxicity of organophosphate esters in zebrafish embryos. J Hazard Mater 2021;401:123389.
54. Jiang F, Liu J, Zeng X, Yu L, Liu C, Wang J. Tris (2-butoxyethyl) phosphate affects motor behavior and axonal growth in zebrafish (Danio rerio) larvae. Aquat Toxicol 2018;198:215-23.
55. Jiang X, Yang Y, Liu P, Li M. Transcriptomics and metabolomics reveal Ca2+ overload and osmotic imbalance-induced neurotoxicity in earthworms (Eisenia fetida) under tri-n-butyl phosphate exposure. Sci Total Environ 2020;748:142169.
56. Sun L, Xu W, Peng T, et al. Developmental exposure of zebrafish larvae to organophosphate flame retardants causes neurotoxicity. Neurotoxicol Teratol 2016;55:16-22.
57. Hong X, Chen R, Yuan L, Zha J. Global microRNA and isomiR expression associated with liver metabolism is induced by organophosphorus flame retardant exposure in male Chinese rare minnow (Gobiocypris rarus). Sci Total Environ 2019;649:829-38.
58. Liu X, Ji K, Choi K. Endocrine disruption potentials of organophosphate flame retardants and related mechanisms in H295R and MVLN cell lines and in zebrafish. Aquat Toxicol 2012;114-115:173-81.
59. Dong L, Wang S, Qu J, You H, Liu D. New understanding of novel brominated flame retardants (NBFRs): Neuro(endocrine) toxicity. Ecotoxicol Environ Saf 2021;208:111570.
60. Harju M, Heimstad E S, D H. Current state of knowledge and monitoring requirements: emerging “new” brominated flame retardants in flame retarded products and the environment. Available from: https://hdl.handle.net/11250/2718681 [Last accessed on 26 Apr 2023].
61. Tennekes HA, Sánchez-Bayo F. The molecular basis of simple relationships between exposure concentration and toxic effects with time. Toxicology 2013;309:39-51.
62. Li X, Zhang Q, Wang P, Fu J, Jiang G. Post dioxin period for feed: cocktail effects of emerging POPs and analogues. Environ Sci Technol 2020;54:6-8.
63. Papachlimitzou A, Barber JL, Losada S, Bersuder P, Law RJ. A review of the analysis of novel brominated flame retardants. J Chromatogr A 2012;1219:15-28.
64. Chokwe TB, Abafe OA, Mbelu SP, Okonkwo JO, Sibali LL. A review of sources, fate, levels, toxicity, exposure and transformations of organophosphorus flame-retardants and plasticizers in the environment. Emerging Contaminants 2020;6:345-66.
65. Liu Y, Gong S, Ye L, et al. Organophosphate (OP) diesters and a review of sources, chemical properties, environmental occurrence, adverse effects, and future directions. Environ Int 2021;155:106691.
66. Yan Z, Feng C, Leung KMY, et al. Insights into the geographical distribution, bioaccumulation characteristics, and ecological risks of organophosphate esters. J Hazard Mater 2023;445:130517.
67. Zhang Q, Wang Y, Zhang C, Yao Y, Wang L, Sun H. A review of organophosphate esters in soil: implications for the potential source, transfer, and transformation mechanism. Environ Res 2022;204:112122.
68. Hou R, Xu Y, Wang Z. Review of OPFRs in animals and humans: absorption, bioaccumulation, metabolism, and internal exposure research. Chemosphere 2016;153:78-90.
69. Smythe TA, Su G, Bergman Å, Letcher RJ. Metabolic transformation of environmentally-relevant brominated flame retardants in Fauna: a review. Environ Int 2022;161:107097.
70. Zhang Q, Yao Y, Wang Y, et al. Plant accumulation and transformation of brominated and organophosphate flame retardants: a review. Environ Pollut 2021;288:117742.
71. Yang Y, Chen P, Ma S, Lu S, Yu Y, An T. A critical review of human internal exposure and the health risks of organophosphate ester flame retardants and their metabolites. Crit Rev Environ Sci Technol 2022;52:1528-60.
72. Su G, Crump D, Letcher RJ, Kennedy SW. Rapid
73. Marteinson S, Guigueno MF, Fernie KJ, Head JA, Chu S, Letcher RJ. Uptake, deposition, and metabolism of triphenyl phosphate in embryonated eggs and chicks of Japanese Quail (Coturnix japonica). Environ Toxicol Chem 2020;39:565-73.
74. Briels N, Løseth ME, Ciesielski TM, et al.
75. Farhat A, Crump D, Porter E, et al. Time-dependent effects of the flame retardant tris(1,3-dichloro-2-propyl) phosphate (TDCPP) on mRNA expression,
76. Yin Y, Zhao N, Yifei L, et al. Deposition, bioaccumulation and depletion of organophosphate triesters (tri-OPEs) and their organophosphate diester metabolites (di-OPEs) from feed to laying hens’ eggs. J Hazard Mater 2022;440:129858.
77. Herczegh SM, Chu S, Letcher RJ. Biotransformation of bisphenol-A bis(diphenyl phosphate):
78. Wang G, Du Z, Chen H, Su Y, Gao S, Mao L. Tissue-specific accumulation, depuration, and transformation of triphenyl phosphate (TPHP) in adult zebrafish (Danio rerio). Environ Sci Technol 2016;50:13555-64.
79. Wang G, Shi H, Du Z, Chen H, Peng J, Gao S. Bioaccumulation mechanism of organophosphate esters in adult zebrafish (Danio rerio). Environ Pollut 2017;229:177-87.
80. Hou R, Huang C, Rao K, Xu Y, Wang Z. Characterized
81. Hou R, Xu Y, Rao K, Feng C, Wang Z. Tissue-specific bioaccumulation, metabolism and excretion of tris (2-ethylhexyl) phosphate (TEHP) in rare minnow (Gobiocyprisrarus). Environ Pollut 2020;261:114245.
82. Hou R, Yuan S, Feng C, Xu Y, Rao K, Wang Z. Toxicokinetic patterns, metabolites formation and distribution in various tissues of the Chinese rare minnow (Gobiocypris rarus) exposed to tri(2‑butoxyethyl) phosphate (TBOEP) and tri-n-butyl phosphate (TNBP). Sci Total Environ 2019;668:806-14.
83. Tang B, Poma G, Bastiaensen M, et al. Bioconcentration and biotransformation of organophosphorus flame retardants (PFRs) in common carp (Cyprinus carpio). Environ Int 2019;126:512-22.
84. Yang R, Ye Y, Chen Y, et al. First Insight into the formation of
85. Yan Z, Feng C, Jin X, et al.
86. Xu T, Wang Q, Shi Q, Fang Q, Guo Y, Zhou B. Bioconcentration, metabolism and alterations of thyroid hormones of Tris(1,3-dichloro-2-propyl) phosphate (TDCPP) in Zebrafish. Environ Toxicol Pharmacol 2015;40:581-6.
87. Chen M, Liao X, Yan SC, et al. Uptake, Accumulation, and biomarkers of pm2.5-associated organophosphate flame retardants in C57BL/6 mice after chronic exposure at real environmental concentrations. Environ Sci Technol 2020;54:9519-28.
88. Chen MH, Zhang SH, Jia SM, Wang LJ, Ma WL.
89. Choi Y, Jeon J, Choi Y, Kim SD. Characterizing biotransformation products and pathways of the flame retardant triphenyl phosphate in Daphnia magna using non-target screening. Sci Total Environ 2020;708:135106.
90. Choi Y, Jeon J, Kim SD. Identification of biotransformation products of organophosphate ester from various aquatic species by suspect and non-target screening approach. Water Res 2021;200:117201.
91. Liu W, Zhang H, Ding J, He W, Zhu L, Feng J. Waterborne and dietary bioaccumulation of organophosphate esters in zooplankton daphnia magna. Int J Environ Res Public Health 2022;19:9382.
92. Mata MC, Castro V, Quintana JB, Rodil R, Beiras R, Vidal-Liñán L. Bioaccumulation of organophosphorus flame retardants in the marine mussel Mytilus galloprovincialis. Sci Total Environ 2022;805:150384.
93. Wang L, Huang X, Laserna AKC, Li SFY. Metabolism of tri-n-butyl phosphate in earthworm Perionyx excavatus. Environ Pollut 2018;234:389-95.
94. Wang L, Huang X, Laserna AKC, Li SFY. Untargeted metabolomics reveals transformation pathways and metabolic response of the earthworm Perionyx excavatus after exposure to triphenyl phosphate. Sci Rep 2018;8:16440.
95. Wu X, Zhu Y, Yang M, Zhang J, Lin D. Biological responses of Eisenia fetida towards the exposure and metabolism of tris (2-butoxyethyl) phosphate. Sci Total Environ 2022;811:152285.
96. Stubbings WA, Guo J, Simon K, Romanak K, Bowerman W, Venier M. Flame retardant metabolites in addled bald eagle eggs from the Great Lakes Region. Environ Sci Technol Lett 2018;5:354-9.
97. Li ZR, Luo XJ, Luo YL, Zeng YH, Mai BX. Comparative study of dechlorane plus (DP) in adult chickens and developing embryos: Stereo-selective bioaccumulation of DP in chickens. Environ Pollut 2019;247:550-5.
98. Eng ML, Karouna-Renier NK, Henry PFP, et al.
99. Goodchild CG, Karouna-Renier NK, Braham RP, Henry PFP, Letcher RJ, Fernie KJ. Hepatic gene expression profiling of american kestrels (Falco sparverius) exposed
100. Goodchild C, Karouna-Renier NK, Henry PFP, et al. Thyroid disruption and oxidative stress in American kestrels following embryonic exposure to the alternative flame retardants, EHTBB and TBPH. Environ Int 2021;157:106826.
101. McKinney MA, Dietz R, Sonne C, et al. Comparative hepatic microsomal biotransformation of selected PBDEs, including decabromodiphenyl ether, and decabromodiphenyl ethane flame retardants in Arctic marine-feeding mammals. Environ Toxicol Chem 2011;30:1506-14.
102. Wang X, Ling S, Guan K, et al. Bioconcentration, biotransformation, and thyroid endocrine disruption of decabromodiphenyl ethane (dbdpe), a novel brominated flame retardant, in Zebrafish Larvae. Environ Sci Technol 2019;53:8437-46.
103. Wang X, Sun Y, Fu M, et al. Nano-TiO2 adsorbed decabromodiphenyl ethane and changed its bioavailability, biotransformation and biotoxicity in zebrafish embryos/larvae. Front Environ Sci 2022;10:860786.
104. Ganci AP, Abdallah MA, Nguyen KH, et al. Investigating the in vitro metabolism of NBFRs by trout liver microsomes using a high resolution accurate mass benchtop Q-Exactive Orbitrap mass spectrometer. 2017. Available from: https://assets.thermofisher.com/TFS-Assets/CMD/posters/PO-HRAM-MS-Metabolism-NBFRS-BFR2017-EN.pdf [Last accessed on 26 Apr 2023].
105. Qiao Z, Wang Y, Lu C, et al. Environmental fate of five brominated flame retardants co-exposure in a water-sediment-zebrafish microcosm system: Enrichment, removal, and metabolism mechanisms. J Clean Prod 2023;387:135916.
106. Jourdan BP, Hanson ML, Muir DC, Solomon KR. Fathead minnow (Pimephales promelas Rafinesque) exposure to three novel brominated flame retardants in outdoor mesocosms: bioaccumulation and biotransformation. Environ Toxicol Chem 2014;33:1148-55.
107. Bearr JS, Mitchelmore CL, Roberts SC, Stapleton HM. Species specific differences in the
108. Tang B, Luo XJ, Huang CC, et al. Stereoselective bioaccumulation of syn- and anti-Dechlorane plus isomers in different tissues of common carp (Cyprinus carpio). Sci Total Environ 2018;616-617:1339-46.
109. Tomy GT, Thomas CR, Zidane TM, et al. Examination of isomer specific bioaccumulation parameters and potential
110. Yang S, Gu S, Tang B, et al. Tissue-specific and stereoselective accumulation of Dechlorane Plus isomers in two predator fish in a laboratory feeding study. Ecotox Environ Safe 2023;249:114469.
111. Lee HJ, Jung JH, Kwon JH. Evaluation of the bioaccumulation potential of selected alternative brominated flame retardants in marine fish using
112. Tomy GT, Palace VP, Pleskach K, et al. Dietary exposure of juvenile rainbow trout (Oncorhynchus mykiss) to 1,2-bis(2,4,6-tribromophenoxy)ethane: bioaccumulation parameters, biochemical effects, and metabolism. Environ Sci Technol 2007;41:4913-8.
113. Nyholm JR, Norman A, Norrgren L, Haglund P, Andersson PL. Uptake and biotransformation of structurally diverse brominated flame retardants in zebrafish (Danio rerio) after dietary exposure. Environ Toxicol Chem 2009;28:1035-42.
114. Nacci D, Clark B, La Guardia MJ, et al. Bioaccumulation and effects of dietary exposure to the alternative flame retardant, bis(2-ethylhexyl) tetrabromophthalate (TBPH), in the Atlantic killifish, Fundulus heteroclitus. Environ Toxicol Chem 2018;37:2350-60.
115. Wang F, Wang J, Dai J, et al. Comparative tissue distribution, biotransformation and associated biological effects by decabromodiphenyl ethane and decabrominated diphenyl ether in male rats after a 90-day oral exposure study. Environ Sci Technol 2010;44:5655-60.
116. Hakk H, Larsen G, Bowers J. Metabolism, tissue disposition, and excretion of 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE) in male Sprague-Dawley rats. Chemosphere 2004;54:1367-74.
117. Silva MJ, Hilton D, Furr J, et al. Quantification of tetrabromo benzoic acid and tetrabromo phthalic acid in rats exposed to the flame retardant Uniplex FPR-45. Arch Toxicol 2016;90:551-7.
118. Roberts SC, Macaulay LJ, Stapleton HM.
119. Knudsen GA, Sanders JM, Birnbaum LS. Disposition of the emerging brominated flame retardant, bis(2-ethylhexyl) tetrabromophthalate, in female Sprague Dawley rats: effects of dose, route and repeated administration. Xenobiotica 2017;47:245-54.
120. Phillips AL, Chen A, Rock KD, Horman B, Patisaul HB, Stapleton HM. Editor’s highlight: transplacental and lactational transfer of firemaster® 550 components in dosed wistar rats. Toxicol Sci 2016;153:246-57.
121. Wang Y, Ling S, Lu C, et al. Exploring the environmental fate of novel brominated flame retardants in a sediment-water-mudsnail system: Enrichment, removal, metabolism and structural damage. Environ Pollut 2020;265:114924.
122. Zhou S, Fu M, Luo K, et al. Fate and toxicity of legacy and novel brominated flame retardants in a sediment-water-clam system: bioaccumulation, elimination, biotransformation and structural damage. Sci Total Environ 2022;840:156634.
123. Qiao Z, Lu C, Han Y, et al. Enrichment and removal of five brominated flame retardants in the presence of co-exposure in a soil-earthworm system. Environ Pollut 2022;310:119877.
124. Su G, Greaves AK, Gauthier L, Letcher RJ. Liquid chromatography-electrospray-tandem mass spectrometry method for determination of organophosphate diesters in biotic samples including Great Lakes herring gull plasma. J Chromatogr A 2014;1374:85-92.
125. Huang Q, Hou R, Lin L, et al. Bioaccumulation and trophic transfer of organophosphate flame retardants and their metabolites in the estuarine food web of the Pearl River, China. Environ Sci Technol 2023;57:3549-61.
126. Yao S, Shi Z, Cao P, et al. A global survey of organophosphate esters and their metabolites in milk: Occurrence and dietary intake via milk consumption. J Hazard Mater 2023;442:130080.
127. Li X, Zhao N, Fu J, et al. Organophosphate diesters (Di-OPEs) play a critical role in understanding global organophosphate esters (OPEs) in fishmeal. Environ Sci Technol 2020;54:12130-41.
128. He C, Wang X, Tang S, et al. Concentrations of organophosphate esters and their specific metabolites in food in southeast Queensland, Australia: Is dietary exposure an important pathway of organophosphate esters and their metabolites? Environ Sci Technol 2018;52:12765-73.
129. Li Z, He C, Thai P, et al. Organophosphate esters and their specific metabolites in chicken eggs from across Australia: Occurrence, profile, and distribution between yolk and albumin fractions. Environ Pollut 2020;262:114260.
130. Li Y, Li J, Fu X. Analysis and occurrence of organophosphorus flame retardants and their metabolites in animal derived food. Researchsquare 2022:preprint.
131. Zhao N, Fu J, Liu Y, Wang P, Su X, Li X. Be aware of organophosphate diesters as direct sources in addition to organophosphate ester metabolites in food supplies. J Agric Food Chem 2021;69:1283-90.
132. Kojima H, Takeuchi S, Van den Eede N, Covaci A. Effects of primary metabolites of organophosphate flame retardants on transcriptional activity via human nuclear receptors. Toxicol Lett 2016;245:31-9.
133. Li Y, Kang Q, Chen R, et al. 2-Ethylhexyl diphenyl phosphate and its hydroxylated metabolites are anti-androgenic and cause adverse reproductive outcomes in male Japanese medaka (Oryzias latipes). Environ Sci Technol 2020;54:8919-25.
134. Selmi-Ruby S, Marín-Sáez J, Fildier A, et al.
135. Chen Q, Lian X, An J, et al. Life cycle exposure to environmentally relevant concentrations of diphenyl phosphate (DPhP) inhibits growth and energy metabolism of zebrafish in a sex-specific manner. Environ Sci Technol 2021;55:13122-31.
136. Lee JS, Kawai YK, Morita Y, Covaci A, Kubota A. Estrogenic and growth inhibitory responses to organophosphorus flame retardant metabolites in zebrafish embryos. Comp Biochem Physiol C Toxicol Pharmacol 2022;256:109321.
137. Zhang Q, Yu C, Fu L, Gu S, Wang C. New Insights in the endocrine disrupting effects of three primary metabolites of organophosphate flame retardants. Environ Sci Technol 2020;54:4465-74.
138. Gramec Skledar D, Tomašič T, Carino A, Distrutti E, Fiorucci S, Peterlin Mašič L. New brominated flame retardants and their metabolites as activators of the pregnane X receptor. Toxicol Lett 2016;259:116-23.
139. Klopčič I, Skledar DG, Mašič LP, Dolenc MS. Comparison of
140. Chen Y, Guo M, Liu R, Ma LQ, Cui X. Effects of novel brominated flame retardants and metabolites on cytotoxicity in human umbilical vein endothelial cells. Chemosphere 2020;253:126653.
141. Fang M, Webster TF, Ferguson PL, Stapleton HM. Characterizing the peroxisome proliferator-activated receptor (PPARγ) ligand binding potential of several major flame retardants, their metabolites, and chemical mixtures in house dust. Environ Health Perspect 2015;123:166-72.
142. Yang M, Zhang X. Comparative developmental toxicity of new aromatic halogenated DBPs in a chlorinated saline sewage effluent to the marine polychaete Platynereis dumerilii. Environ Sci Technol 2013;47:10868-76.
143. Zheng G, Miller P, von Hippel FA, Buck CL, Carpenter DO, Salamova A. Legacy and emerging semi-volatile organic compounds in sentinel fish from an arctic formerly used defense site in Alaska. Environ Pollut 2020;259:113872.
144. Strobel A, Willmore WG, Sonne C, Dietz R, Letcher RJ. Organophosphate esters in East Greenland polar bears and ringed seals: adipose tissue concentrations and
145. Hidalgo-Serrano M, Borrull F, Pocurull E, Marcé RM. Determination of organophosphate ester metabolites in seafood species by QuEChERS-SPE followed by LC-HRMS. Molecules 2022;27:8635.
146. Chen X, Zhang N, Li L, et al. A simple method for simultaneous determination of organophosphate esters and their diester metabolites in dairy products and human milk by using solid-phase extraction coupled to liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem 2022;414:4255-65.
147. Farhat A, Crump D, Chiu S, et al.
148. Wang G, Chen H, Du Z, Li J, Wang Z, Gao S.
149. Giraudo M, Douville M, Letcher RJ, Houde M. Effects of food-borne exposure of juvenile rainbow trout (Oncorhynchus mykiss) to emerging brominated flame retardants 1,2-bis(2,4,6-tribromophenoxy)ethane and 2-ethylhexyl-2,3,4,5-tetrabromobenzoate. Aquat Toxicol 2017;186:40-9.
150. MacFarland HN, Punte CL Jr. Toxicological studies on tri-(2-ethylhexyl)-phosphate. Arch Environ Health 1966;13:13-20.
151. Nomeir AA, Kato S, Matthews HB. The metabolism and disposition of tris(1,3-dichloro-2-propyl) phosphate (Fyrol FR-2) in the rat. Toxicol Appl Pharmacol 1981;57:401-13.