REFERENCES
1. Harbers JV, Huijbregts MA, Posthuma L, Van de Meent D. Estimating the impact of high-production-volume chemicals on remote ecosystems by toxic pressure calculation. Environ Sci Technol 2006;40:1573-80.
2. Núñez M, Fontanals N, Borrull F, Marcé RM. Multiresidue analytical method for high production volume chemicals in dust samples, occurrence and human exposure assessment. Chemosphere 2022;301:134639.
3. Schweizer C, Edwards RD, Bayer-Oglesby L, et al. Indoor time-microenvironment-activity patterns in seven regions of Europe. J Expo Sci Environ Epidemiol 2007;17:170-81.
4. Rostkowski P, Haglund P, Aalizadeh R, et al. The strength in numbers: comprehensive characterization of house dust using complementary mass spectrometric techniques. Anal Bioanal Chem 2019;411:1957-77.
5. Lucattini L, Poma G, Covaci A, de Boer J, Lamoree MH, Leonards PEG. A review of semi-volatile organic compounds (SVOCs) in the indoor environment: occurrence in consumer products, indoor air and dust. Chemosphere 2018;201:466-82.
6. Hollender J, Schymanski EL, Singer HP, Ferguson PL. Nontarget screening with high resolution mass spectrometry in the environment: ready to go? Environ Sci Technol 2017;51:11505-12.
7. Alygizakis NA, Samanipour S, Hollender J, et al. Exploring the potential of a global emerging contaminant early warning network through the use of retrospective suspect screening with high-resolution mass spectrometry. Environ Sci Technol 2018;52:5135-44.
8. Gago-ferrero P, Schymanski E, Hollender J, Thomaidis N. Nontarget Analysis of Environmental Samples Based on Liquid Chromatography Coupled to High Resolution Mass Spectrometry (LC-HRMS). Compr Anal Chem 2016;71:381-403.
9. Hakme E, Lozano A, Gómez-Ramos MM, Hernando MD, Fernández-Alba AR. Non-target evaluation of contaminants in honey bees and pollen samples by gas chromatography time-of-flight mass spectrometry. Chemosphere 2017;184:1310-9.
10. Schymanski EL, Jeon J, Gulde R, et al. Identifying small molecules via high resolution mass spectrometry: communicating confidence. Environ Sci Technol 2014;48:2097-8.
11. Gómez-Ramos MM, Ucles S, Ferrer C, Fernández-Alba AR, Hernando MD. Exploration of environmental contaminants in honeybees using GC-TOF-MS and GC-Orbitrap-MS. Sci Total Environ 2019;647:232-44.
12. Müller A, Schulz W, Ruck WK, Weber WH. A new approach to data evaluation in the non-target screening of organic trace substances in water analysis. Chemosphere 2011;85:1211-9.
13. Gago-Ferrero P, Schymanski EL, Bletsou AA, et al. Extended suspect and non-target strategies to characterize emerging polar organic contaminants in raw wastewater with LC-HRMS/MS. Environ Sci Technol 2015;49:12333-41.
14. López A, Dualde P, Yusà V, Coscollà C. Retrospective analysis of pesticide metabolites in urine using liquid chromatography coupled to high-resolution mass spectrometry. Talanta 2016;160:547-55.
15. Martínez-Piernas AB, Plaza-Bolaños P, Agüera A. Assessment of the presence of transformation products of pharmaceuticals in agricultural environments irrigated with reclaimed water by wide-scope LC-QTOF-MS suspect screening. J Hazard Mater 2021;412:125080.
16. Cariou R, Omer E, Léon A, Dervilly-Pinel G, Le Bizec B. Screening halogenated environmental contaminants in biota based on isotopic pattern and mass defect provided by high resolution mass spectrometry profiling. Anal Chim Acta 2016;936:130-8.
17. Kruve A. Semi-quantitative non-target analysis of water with liquid chromatography/high-resolution mass spectrometry: how far are we? Rapid Commun Mass Spectrom 2019;33 Suppl 3:54-63.
18. Aalizadeh R, Nikolopoulou V, Alygizakis N, Slobodnik J, Thomaidis NS. A novel workflow for semi-quantification of emerging contaminants in environmental samples analyzed by LC-HRMS. Anal Bioanal Chem 2022;414:7435-50.
19. Alygizakis NA, Oswald P, Thomaidis NS, et al. NORMAN digital sample freezing platform: a European virtual platform to exchange liquid chromatography high resolution-mass spectrometry data and screen suspects in “digitally frozen” environmental samples. Trac-trend Anal Chem 2019;115:129-37.
20. Günthardt BF, Wettstein FE, Hollender J, et al. Retrospective hrms screening and dedicated target analysis reveal a wide exposure to pyrrolizidine alkaloids in small streams. Environ Sci Technol 2021;55:1036-44.
21. Creusot N, Casado-Martinez C, Chiaia-Hernandez A, et al. Retrospective screening of high-resolution mass spectrometry archived digital samples can improve environmental risk assessment of emerging contaminants: a case study on antifungal azoles. Environ Int 2020;139:105708.
22. Hernández F, Ibáñez M, Gracia-Lor E, Sancho JV. Retrospective LC-QTOF-MS analysis searching for pharmaceutical metabolites in urban wastewater. J Sep Sci 2011;34:3517-26.
23. Fels H, Herzog J, Skopp G, et al. Retrospective analysis of new psychoactive substances in blood samples of German drivers suspected of driving under the influence of drugs. Drug Test Anal 2020;12:1470-6.
24. Guo J, Huan T. Comparison of full-scan, data-dependent, and data-independent acquisition modes in liquid chromatography-mass spectrometry based untargeted metabolomics. Anal Chem 2020;92:8072-80.
25. Dubocq F, Kärrman A, Gustavsson J, Wang T. Comprehensive chemical characterization of indoor dust by target, suspect screening and nontarget analysis using LC-HRMS and GC-HRMS. Environ Pollut 2021;276:116701.
26. Moschet C, Anumol T, Lew BM, Bennett DH, Young TM. Household dust as a repository of chemical accumulation: new insights from a comprehensive high-resolution mass spectrometric study. Environ Sci Technol 2018;52:2878-87.
27. Chambers MC, Maclean B, Burke R, et al. A cross-platform toolkit for mass spectrometry and proteomics. Nat Biotechnol 2012;30:918-20.
28. Tsugawa H, Cajka T, Kind T, et al. MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat Methods 2015;12:523-6.
29. MS-DIAL. MS-DIAL metabolomics MSP spectral kit containing EI-MS, MS/MS, and CCS values. Available from: http://prime.psc.riken.jp/compms/msdial/main.html#MSP [Last accessed on 27 Sep 2022].
30. Price EJ, Palát J, Coufaliková K, et al. Open, high-resolution ei+ spectral library of anthropogenic compounds. Front Public Health 2021;9:622558.
31. Djoumbou Feunang Y, Eisner R, Knox C, et al. ClassyFire: automated chemical classification with a comprehensive, computable taxonomy. J Cheminform 2016;8:61.
32. NIST. Certificate of analysis, standard reference material 2585: Organic Contaminants in House Dust. 2018. Available from: https://www-s.nist.gov/srmors/view_cert.cfm?srm=2585 [Last accessed on 27 Sep 2022].
33. Mahler BJ, Van Metre PC, Wilson JT, Musgrove M, Zaugg SD, Burkhardt MR. Fipronil and its degradates in indoor and outdoor dust. Environ Sci Technol 2009;43:5665-70.
34. Harnly ME, Bradman A, Nishioka M, et al. Pesticides in dust from homes in an agricultural area. Environ Sci Technol 2009;43:8767-74.
35. Chupeau Z, Bonvallot N, Mercier F, Le Bot B, Chevrier C, Glorennec P. Organophosphorus flame retardants: a global review of indoor contamination and human exposure in europe and epidemiological evidence. Int J Environ Res Public Health 2020;17:6713.
36. EU. Commission Regulation (EU) 2017/1410 of 2 August 2017 amending Annexes II and III to Regulation (EC) No 1223/2009 of the European Parliament and of the Council on cosmetic products. 2017. Available from: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32017R1410&from=EN [Last accessed on 27 Sep 2022].
37. Wang L, Asimakopoulos AG, Moon HB, Nakata H, Kannan K. Benzotriazole, benzothiazole, and benzophenone compounds in indoor dust from the United States and East Asian countries. Environ Sci Technol 2013;47:4752-9.
38. Fruijtier-Pölloth C. Safety assessment on polyethylene glycols (PEGs) and their derivatives as used in cosmetic products. Toxicology 2005;214:1-38.
39. Tran TM, Minh TB, Kumosani TA, Kannan K. Occurrence of phthalate diesters (phthalates), p-hydroxybenzoic acid esters (parabens), bisphenol A diglycidyl ether (BADGE) and their derivatives in indoor dust from Vietnam: implications for exposure. Chemosphere 2016;144:1553-9.
40. Kloepfer A, Jekel M, Reemtsma T. Occurrence, sources, and fate of benzothiazoles in municipal wastewater treatment plants. Environ Sci Technol 2005;39:3792-8.
41. Liu R, Ruan T, Wang T, Song S, Guo F, Jiang G. Determination of nine benzotriazole UV stabilizers in environmental water samples by automated on-line solid phase extraction coupled with high-performance liquid chromatography-tandem mass spectrometry. Talanta 2014;120:158-66.
42. Abb M, Breuer JV, Zeitz C, Lorenz W. Analysis of pesticides and PCBs in waste wood and house dust. Chemosphere 2010;81:488-93.