REFERENCES
1. Mensah GA, Roth GA, Fuster V. The global burden of cardiovascular diseases and risk factors: 2020 and beyond. J Am Coll Cardiol. 2019;74:2529-32.
3. Sposato LA, Gupta AK, Wu KC. JAHA spotlight on neurocardiology: an emerging field gaining traction among neurologists and cardiologists. J Am Heart Assoc. 2024;13:e038026.
4. Gelosa P, Castiglioni L, Rzemieniec J, Muluhie M, Camera M, Sironi L. Cerebral derailment after myocardial infarct: mechanisms and effects of the signaling from the ischemic heart to brain. J Mol Med. 2022;100:23-41.
5. Feng HP, Chien WC, Cheng WT, Chung CH, Cheng SM, Tzeng WC. Risk of anxiety and depressive disorders in patients with myocardial infarction: a nationwide population-based cohort study. Medicine. 2016;95:e4464.
6. Wolters FJ, Segufa RA, Darweesh SKL, et al. Coronary heart disease, heart failure, and the risk of dementia: a systematic review and meta-analysis. Alzheimers Dement. 2018;14:1493-504.
7. Li Q, Barres BA. Microglia and macrophages in brain homeostasis and disease. Nat Rev Immunol. 2018;18:225-42.
8. Jinawong K, Apaijai N, Chattipakorn N, Chattipakorn SC. Cognitive impairment in myocardial infarction and heart failure. Acta Physiol. 2021;232:e13642.
9. Althammer F, Ferreira-Neto HC, Rubaharan M, et al. Three-dimensional morphometric analysis reveals time-dependent structural changes in microglia and astrocytes in the central amygdala and hypothalamic paraventricular nucleus of heart failure rats. J Neuroinflamm 2020;17:221.
10. Fujiyoshi A, Jacobs DR Jr, Fitzpatrick AL, et al. Coronary artery calcium and risk of dementia in MESA (multi-ethnic study of atherosclerosis). Circ Cardiovasc Imaging. 2017;10:e005349.
11. Kaplan A, Yabluchanskiy A, Ghali R, Altara R, Booz GW, Zouein FA. Cerebral blood flow alteration following acute myocardial infarction in mice. Biosci Rep. 2018;38:BSR20180382.
12. Noureddine FY, Altara R, Fan F, Yabluchanskiy A, Booz GW, Zouein FA. Impact of the Renin-angiotensin system on the endothelium in vascular dementia: unresolved issues and future perspectives. Int J Mol Sci. 2020;21:4268.
13. Testai FD, Gorelick PB, Chuang PY, et al. Cardiac contributions to Brain health: a scientific statement from the American Heart Association. Stroke. 2024;55:e425-38.
14. Gruhn N, Larsen FS, Boesgaard S, et al. Cerebral blood flow in patients with chronic heart failure before and after heart transplantation. Stroke. 2001;32:2530-3.
15. Azcoitia I, Barreto GE, Garcia-Segura LM. Molecular mechanisms and cellular events involved in the neuroprotective actions of estradiol. Analysis of sex differences. Front Neuroendocrinol. 2019;55:100787.
16. Raz L. Estrogen and cerebrovascular regulation in menopause. Mol Cell Endocrinol. 2014;389:22-30.
17. Kim GW, Park K, Jeong GW. Effects of sex hormones and age on brain volume in post-menopausal women. J Sex Med. 2018;15:662-70.
18. Frangogiannis NG. Pathophysiology of myocardial infarction. In: Terjung R, editor. Comprehensive Physiology. Wiley; 2011. pp. 1841-75.
19. Moraes-Silva IC, Rodrigues B, Coelho-Junior HJ, Feriani DJ, Irigoyen M. Myocardial infarction and exercise training: evidence from basic science. In: Xiao J, editor. Exercise for cardiovascular disease prevention and treatment. Singapore: Springer; 2017. pp. 139-53.
20. Kiani F, Hesabi N, Arbabisarjou A. Assessment of risk factors in patients with myocardial infarction. Glob J Health Sci. 2015;8:255-62.
22. Teo KK, Rafiq T. Cardiovascular risk factors and prevention: a perspective from developing countries. Can J Cardiol. 2021;37:733-43.
23. Yusuf S, Hawken S, Ounpuu S. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet. 2004;364:937-52.
24. Christia P, Bujak M, Gonzalez-Quesada C, et al. Systematic characterization of myocardial inflammation, repair, and remodeling in a mouse model of reperfused myocardial infarction. J Histochem Cytochem. 2013;61:555-70.
25. Shinde AV, Frangogiannis NG. Fibroblasts in myocardial infarction: a role in inflammation and repair. J Mol Cell Cardiol. 2014;70:74-82.
26. Richardson WJ, Clarke SA, Quinn TA, Holmes JW. Physiological implications of myocardial scar structure. Compr Physiol. 2015;5:1877-909.
27. Martin TP, MacDonald EA, Elbassioni AAM, et al. Preclinical models of myocardial infarction: from mechanism to translation. Br J Pharmacol. 2022;179:770-91.
28. Zornoff LAM, Paiva SAR, Duarte DR, Spadaro J. Ventricular remodeling after myocardial infarction: concepts and clinical implications. Arq Bras Cardiol. 2009;92:150-64.
29. Joshi NV, Toor I, Shah AS, et al. Systemic atherosclerotic inflammation following acute myocardial infarction: myocardial infarction begets myocardial infarction. J Am Heart Assoc. 2015;4:e001956.
30. Mainali N, Li X, Wang X, et al. Myocardial infarction elevates endoplasmic reticulum stress and protein aggregation in heart as well as brain. Mol Cell Biochem. 2024;479:2741-53.
31. Pereira A. Developing the concepts of homeostasis, homeorhesis, allostasis, elasticity, flexibility and plasticity of brain function. NeuroSci. 2021;2:372-82.
32. Merkler AE, Alakbarli J, Barbar T, et al. Associations between the size and location of myocardial infarction and cerebral infarction. J Neurol Sci. 2020;419:117182.
33. Meng L, Hou W, Chui J, Han R, Gelb AW. Cardiac output and cerebral blood flow: the integrated regulation of brain perfusion in adult humans. Anesthesiology. 2015;123:1198-208.
34. Doehner W, Ural D, Haeusler KG, et al. Heart and brain interaction in patients with heart failure: overview and proposal for a taxonomy. A position paper from the Study Group on Heart and Brain Interaction of the Heart Failure Association. Eur J Heart Fail. 2018;20:199-215.
35. Ovsenik A, Podbregar M, Fabjan A. Cerebral blood flow impairment and cognitive decline in heart failure. Brain Behav. 2021;11:e02176.
36. Athilingam P, Moynihan J, Chen L, D'Aoust R, Groer M, Kip K. Elevated levels of interleukin 6 and C-reactive protein associated with cognitive impairment in heart failure. Congest Heart Fail. 2013;19:92-8.
37. Kindermann I, Fischer D, Karbach J, et al. Cognitive function in patients with decompensated heart failure: the Cognitive Impairment in Heart Failure (CogImpair-HF) study. Eur J Heart Fail. 2012;4:404-13.
38. Gironi M, Bianchi A, Russo A, et al. Oxidative imbalance in different neurodegenerative diseases with memory impairment. Neurodegener Dis. 2010;8:129-37.
39. Kure CE, Rosenfeldt FL, Scholey AB, et al. Relationships among cognitive function and cerebral blood flow, oxidative stress, and inflammation in older heart failure patients. J Card Fail. 2016;22:548-59.
40. Mueller K, Thiel F, Beutner F, et al. Brain damage with heart failure: cardiac biomarker alterations and gray matter decline. Circ Res. 2020;126:750-64.
41. Thackeray JT, Hupe HC, Wang Y, et al. Myocardial inflammation predicts remodeling and neuroinflammation after myocardial infarction. J Am Coll Cardiol. 2018;71:263-75.
42. Sun LL, Duan MJ, Ma JC, et al. Myocardial infarction-induced hippocampal microtubule damage by cardiac originating microRNA-1 in mice. J Mol Cell Cardiol. 2018;120:12-27.
43. Dworak M, Stebbing M, Kompa AR, Rana I, Krum H, Badoer E. Sustained activation of microglia in the hypothalamic PVN following myocardial infarction. Auton Neurosci. 2012;169:70-6.
44. Zhang W, Luo P. Myocardial infarction predisposes neurodegenerative diseases. J Alzheimers Dis. 2020;74:579-87.
45. Rinaldi B, Guida F, Furiano A, et al. Effect of prolonged moderate exercise on the changes of nonneuronal cells in early myocardial infarction. Neural Plast. 2015;2015:265967.
46. Wann BP, Boucher M, Kaloustian S, Nim S, Godbout R, Rousseau G. Apoptosis detected in the amygdala following myocardial infarction in the rat. Biol Psychiatry. 2006;59:430-3.
47. Chang M, Wang H, Lei Y, Yang H, Xu J, Tang S. Proteomic study of left ventricle and cortex in rats after myocardial infarction. Sci Rep. 2024;14:6866.
48. Tulner DM, Smith OR, de Jonge P, et al. Circulating cerebral S100B protein is associated with depressive symptoms following myocardial infarction. Neuropsychobiology. 2009;59:87-95.
49. Ni RSS, Mohamed Raffi HQ, Dong Y. The pathophysiology of cognitive impairment in individuals with heart failure: a systematic review. Front Cardiovasc Med. 2023;10:1181979.
50. Suzuki H, Matsumoto Y, Ota H, et al. Hippocampal blood flow abnormality associated with depressive symptoms and cognitive impairment in patients with chronic heart failure. Circ J. 2016;80:1773-80.
51. Rouch L, Hoang T, Xia F, Sidney S, Lima JAC, Yaffe K. Twenty-five-year change in cardiac structure and function and midlife cognition: the CARDIA study. Neurology. 2022;98:e1040-9.
52. Pan A, Kumar R, Macey PM, Fonarow GC, Harper RM, Woo MA. Visual assessment of brain magnetic resonance imaging detects injury to cognitive regulatory sites in patients with heart failure. J Card Fail. 2013;19:94-100.
53. Sundbøll J, Horváth-Puhó E, Adelborg K, et al. Higher risk of vascular dementia in myocardial infarction survivors. Circulation. 2018;137:567-77.
54. Johansen MC, Ye W, Gross A, et al. Association between acute myocardial infarction and cognition. JAMA Neurol. 2023;80:723-31.
55. Kasprzak D, Kaczmarek-Majer K, Rzeźniczak J, et al. Cognitive impairment in cardiovascular patients after myocardial infarction: prospective clinical study. J Clin Med. 2023;12:4954.
56. Jiang X, Lewis CE, Allen NB, Sidney S, Yaffe K. Premature cardiovascular disease and brain health in midlife: the CARDIA study. Neurology. 2023;100:e1454-63.
57. Huijts M, van Oostenbrugge RJ, Duits A, et al. Cognitive impairment in heart failure: results from the Trial of Intensified versus standard medical therapy in elderly patients with Congestive Heart Failure (TIME-CHF) randomized trial. Eur J Heart Fail. 2013;15:699-707.
58. Goyal P, Didomenico RJ, Pressler SJ, et al. Cognitive impairment in heart failure: a heart failure society of America scientific statement. J Card Fail. 2024;30:488-504.
59. Iadecola C. The neurovascular unit coming of age: a journey through neurovascular coupling in health and disease. Neuron. 2017;96:17-42.
60. Jackson SL, Tong X, King RJ, Loustalot F, Hong Y, Ritchey MD. National burden of heart failure events in the United States, 2006 to 2014. Circ Heart Fail. 2018;11:e004873.
61. Adamski MG, Sternak M, Mohaissen T, et al. Vascular cognitive impairment linked to brain endothelium inflammation in early stages of heart failure in mice. J Am Heart Assoc. 2018;7:e007694.
62. Yu Y, Weiss RM, Wei SG. Interleukin 17A contributes to blood-brain barrier disruption of hypothalamic paraventricular nucleus in rats with myocardial infarction. J Am Heart Assoc. 2024;13:e032533.
63. Yang J, Zhang F, Shi H, et al. Neutrophil-derived advanced glycation end products-Nε-(carboxymethyl) lysine promotes RIP3-mediated myocardial necroptosis via RAGE and exacerbates myocardial ischemia/reperfusion injury. FASEB J. 2019;33:14410-22.
64. Korn A, Baylan U, Simsek S, Schalkwijk CG, Niessen HWM, Krijnen PAJ. Myocardial infarction coincides with increased NOX2 and Nε-(carboxymethyl) lysine expression in the cerebral microvasculature. Open Heart. 2021;8:e001842.
65. Bentzon JF, Otsuka F, Virmani R, Falk E. Mechanisms of plaque formation and rupture. Circ Res. 2014;114:1852-66.
66. Thygesen K, Alpert JS, White HD, et al. Universal definition of myocardial infarction. Circulation. 2007;116:2634-53.
67. Thygesen K, Alpert JS, Jaffe AS. Fourth universal definition of myocardial infarction (2018). Eur Heart J. 2018;40:237-69.
68. Pandey AK, Duong T, Swiatkiewicz I, Daniels LB. A comparison of biomarker rise in type 1 and type 2 myocardial infarction. Am J Med. 2020;133:1203-8.
69. McCarthy CP, Kolte D, Kennedy KF, Vaduganathan M, Wasfy JH, Januzzi JL Jr. Patient characteristics and clinical outcomes of type 1 versus type 2 myocardial infarction. J Am Coll Cardiol. 2021;77:848-57.
70. Lambrecht S, Sarkisian L, Saaby L, et al. Different causes of death in patients with myocardial infarction type 1, type 2, and myocardial injury. Am J Med. 2018;131:548-54.
71. Sagris M, Antonopoulos AS, Theofilis P, et al. Risk factors profile of young and older patients with myocardial infarction. Cardiovasc Res. 2022;118:2281-92.
72. Papi M, Brunelli R, Ciasca G, et al. Estradiol protective role in atherogenesis through LDL structure modification. J Phys D Appl Phys. 2016;49:285402.
73. Millett ERC, Peters SAE, Woodward M. Sex differences in risk factors for myocardial infarction: cohort study of UK Biobank participants. BMJ. 2018;363:k4247.
74. Palmer J, Lloyd A, Steele L, et al. Differential risk of ST-segment elevation myocardial infarction in male and female smokers. J Am Coll Cardiol. 2019;73:3259-66.
75. Wei Y, Qi B, Xu J, et al. Age- and sex-related difference in lipid profiles of patients hospitalized with acute myocardial infarction in East China. J Clin Lipidol. 2014;8:562-7.
76. Zhang J, Wang H, Yang S, Wang X. Comparison of lipid profiles and inflammation in pre- and post-menopausal women with cerebral infarction and the role of atorvastatin in such populations. Lipids Health Dis. 2018;17:20.
77. Peters SAE, Colantonio LD, Chen L, et al. Sex differences in incident and recurrent coronary events and all-cause mortality. J Am Coll Cardiol. 2020;76:1751-60.
78. Zhu D, Chung HF, Dobson AJ, et al. Age at natural menopause and risk of incident cardiovascular disease: a pooled analysis of individual patient data. Lancet Public Health. 2019;4:e553-64.
79. El Khoudary SR, Aggarwal B, Beckie TM, et al. Menopause transition and cardiovascular disease risk: implications for timing of early prevention: a scientific statement from the American heart association. Circulation. 2020;142:e506-32.
80. Benjannet S, Rhainds D, Essalmani R, et al. NARC-1/PCSK9 and its natural mutants: zymogen cleavage and effects on the low density lipoprotein (LDL) receptor and LDL cholesterol. J Biol Chem. 2004;279:48865-75.
81. Zhang Z, Wei TF, Zhao B, et al. Sex differences associated with circulating PCSK9 in patients presenting with acute myocardial infarction. Sci Rep. 2019;9:3113.
82. Saito K, Cui H. Emerging roles of estrogen-related receptors in the brain: potential interactions with estrogen signaling. Int J Mol Sci. 2018;19:1091.
83. Mosconi L, Nerattini M, Matthews DC, et al. In vivo brain estrogen receptor density by neuroendocrine aging and relationships with cognition and symptomatology. Sci Rep. 2024;14:12680.
84. Żabińska M, Wiśniewska K, Węgrzyn G, Pierzynowska K. Exploring the physiological role of the G protein-coupled estrogen receptor (GPER) and its associations with human diseases. Psychoneuroendocrinology. 2024;166:107070.
85. Park CJ, Zhao Z, Glidewell-Kenney C, et al. Genetic rescue of nonclassical ERα signaling normalizes energy balance in obese Erα-null mutant mice. J Clin Invest. 2011;121:604-12.
86. Phan A, Suschkov S, Molinaro L, et al. Rapid increases in immature synapses parallel estrogen-induced hippocampal learning enhancements. Proc Natl Acad Sci USA. 2015;112:16018-23.
87. Lymer J, Robinson A, Winters BD, Choleris E. Rapid effects of dorsal hippocampal G-protein coupled estrogen receptor on learning in female mice. Psychoneuroendocrinology. 2017;77:131-40.
88. Waters EM, Thompson LI, Patel P, et al. G-protein-coupled estrogen receptor 1 is anatomically positioned to modulate synaptic plasticity in the mouse hippocampus. J Neurosci. 2015;35:2384-97.
89. Ishii H, Otsuka M, Kanaya M, Higo S, Hattori Y, Ozawa H. Applicability of anti-human estrogen receptor β antibody PPZ0506 for the immunodetection of rodent estrogen receptor β proteins. Int J Mol Sci. 2019;20:6312.
90. Merchenthaler I, Lane MV, Numan S, Dellovade TL. Distribution of estrogen receptor alpha and beta in the mouse central nervous system: in vivo autoradiographic and immunocytochemical analyses. J Comp Neurol. 2004;473:270-91.
91. Dietrich AK, Humphreys GI, Nardulli AM. Expression of estrogen receptor α in the mouse cerebral cortex. Mol Cell Endocrinol. 2015;406:19-26.
92. Bean LA, Ianov L, Foster TC. Estrogen receptors, the hippocampus, and memory. Neuroscientist. 2014;20:534-45.
93. Kanaya M, Higo S, Ozawa H. Neurochemical characterization of neurons expressing estrogen receptor β in the hypothalamic nuclei of rats using in situ hybridization and immunofluorescence. Int J Mol Sci. 2019;21:115.
94. Silva JS, Montagnoli TL, Rocha BS, Tacco MLCA, Marinho SCP, Zapata-Sudo G. Estrogen receptors: therapeutic perspectives for the treatment of cardiac dysfunction after myocardial infarction. Int J Mol Sci. 2021;22:525.
95. Iorga A, Cunningham CM, Moazeni S, Ruffenach G, Umar S, Eghbali M. The protective role of estrogen and estrogen receptors in cardiovascular disease and the controversial use of estrogen therapy. Biol Sex Differ. 2017;8:33.
96. Mahmoodzadeh S, Leber J, Zhang X, et al. Cardiomyocyte-specific estrogen receptor alpha increases angiogenesis, lymphangiogenesis and reduces fibrosis in the female mouse heart post-myocardial infarction. J Cell Sci Ther. 2014;5:153.
97. Zhai P, Eurell TE, Cooke PS, Lubahn DB, Gross DR. Myocardial ischemia-reperfusion injury in estrogen receptor-alpha knockout and wild-type mice. Am J Physiol Heart Circ Physiol. 2000;278:H1640-7.
98. Iorga A, Umar S, Ruffenach G, et al. Estrogen rescues heart failure through estrogen receptor Beta activation. Biol Sex Differ. 2018;9:48.
99. Firth JM, Yang HY, Francis AJ, Islam N, MacLeod KT. The effect of estrogen on intracellular Ca2+ and Na+ regulation in heart failure. JACC Basic Transl Sci. 2020;5:901-12.
100. Babiker FA, Joseph S, Juggi J. The protective effects of 17beta-estradiol against ischemia-reperfusion injury and its effect on pacing postconditioning protection to the heart. J Physiol Biochem. 2014;70:151-62.
101. WHO. Menopause; 2022. Available from: https://www.who.int/news-room/fact-sheets/detail/menopause/ [Last accessed on 30 Jun 2025].
102. Gannon OJ, Naik JS, Riccio D, et al. Menopause causes metabolic and cognitive impairments in a chronic cerebral hypoperfusion model of vascular contributions to cognitive impairment and dementia. Biol Sex Differ. 2023;14:34.
103. Benedusi V, Meda C, Della Torre S, Monteleone G, Vegeto E, Maggi A. A lack of ovarian function increases neuroinflammation in aged mice. Endocrinology. 2012;153:2777-88.
104. Tantipongpiradet A, Monthakantirat O, Vipatpakpaiboon O, et al. Effects of Puerarin on the ovariectomy-induced depressive-like behavior in ICR mice and its possible mechanism of action. Molecules. 2019;24:4569.
105. Sanchez K, Wu SL, Kakkar R, Darling JS, Harper CS, Fonken LK. Ovariectomy in mice primes hippocampal microglia to exacerbate behavioral sickness responses. Brain Behav Immun Health. 2023;30:100638.
106. Gaignard P, Savouroux S, Liere P, et al. Effect of sex differences on brain mitochondrial function and its suppression by ovariectomy and in aged mice. Endocrinology. 2015;156:2893-904.
107. Guo W, Wang X, Chen Y, Wang F, Qiu J, Lu W. Effect of menopause status on brain perfusion hemodynamics. Stroke. 2024;55:260-8.
108. Kisler K, Nelson AR, Montagne A, Zlokovic BV. Cerebral blood flow regulation and neurovascular dysfunction in Alzheimer disease. Nat Rev Neurosci. 2017;18:419-34.
109. Deer RR, Stallone JN. Effects of estrogen on cerebrovascular function: age-dependent shifts from beneficial to detrimental in small cerebral arteries of the rat. Am J Physiol Heart Circ Physiol. 2016;310:H1285-94.
110. Handley EE, Reale LA, Chuckowree JA, et al. Estrogen enhances dendrite spine function and recovers deficits in neuroplasticity in the prpTDP-43A315T mouse model of amyotrophic lateral sclerosis. Mol Neurobiol. 2022;59:2962-76.
111. Ghisletti S, Meda C, Maggi A, Vegeto E. 17beta-estradiol inhibits inflammatory gene expression by controlling NF-kappaB intracellular localization. Mol Cell Biol. 2005;25:2957-68.
112. Khan MM, Wakade C, de Sevilla L, Brann DW. Selective estrogen receptor modulators (SERMs) enhance neurogenesis and spine density following focal cerebral ischemia. J Steroid Biochem Mol Biol. 2015;146:38-47.
113. Hanson AJ, Bayer-Carter JL, Green PS, et al. Effect of apolipoprotein E genotype and diet on apolipoprotein E lipidation and amyloid peptides: randomized clinical trial. JAMA Neurol. 2013;70:972-80.
114. Thong EHE, Quek EJW, Loo JH, et al. Acute myocardial infarction and risk of cognitive impairment and dementia: a review. Biology. 2023;12:1154.
115. García PL, Rodríguez García D. Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2011;42:e584.
116. Biessels GJ, Despa F. Cognitive decline and dementia in diabetes mellitus: mechanisms and clinical implications. Nat Rev Endocrinol. 2018;14:591-604.
117. Ungvari Z, Toth P, Tarantini S, et al. Hypertension-induced cognitive impairment: from pathophysiology to public health. Nat Rev Nephrol. 2021;17:639-54.
118. Gillies GE, Pienaar IS, Vohra S, Qamhawi Z. Sex differences in Parkinson's disease. Front Endocrinol. 2014;35:370-84.
119. Salinero AE, Abi-Ghanem C, Venkataganesh H, et al. Treatment with brain specific estrogen prodrug ameliorates cognitive effects of surgical menopause in mice. Horm Behav. 2024;164:105594.
120. Maki PM, Henderson VW. Hormone therapy, dementia, and cognition: the Women's Health initiative 10 years on. Climacteric. 2012;15:256-62.
121. Yaffe K, Krueger K, Sarkar S, et al. Cognitive function in postmenopausal women treated with raloxifene. N Engl J Med. 2001;344:1207-13.
122. Kulkarni J, Mu E, Li Q, et al. Bazedoxifene plus conjugated estrogen to treat menopausal depression-A pilot study. J Pharmacol Exp Ther. 2025;392:103527.
123. Hill RA, Kouremenos K, Tull D, et al. Bazedoxifene - a promising brain active SERM that crosses the blood brain barrier and enhances spatial memory. Psychoneuroendocrinology. 2020;121:104830.
124. Gaignard P, Fréchou M, Liere P, et al. Sex differences in brain mitochondrial metabolism: influence of endogenous steroids and stroke. J Neuroendocrinol. 2018:30.
125. Prokai-Tatrai K, Prokai L. The impact of 17β-estradiol on the estrogen-deficient female brain: from mechanisms to therapy with hot flushes as target symptoms. Front Endocrinol. 2023;14:1310432.
126. Resnick SM, Espeland MA, Jaramillo SA, et al. Postmenopausal hormone therapy and regional brain volumes: the WHIMS-MRI Study. Neurology. 2009;72:135-42.
127. Williams CL, Barnett AM, Meck WH. Organizational effects of early gonadal secretions on sexual differentiation in spatial memory. Behav Neurosci. 1990;104:84-97.
128. Fester L, Prange-Kiel J, Zhou L, et al. Estrogen-regulated synaptogenesis in the hippocampus: sexual dimorphism in vivo but not in vitro. J Steroid Biochem Mol Biol. 2012;131:24-9.
129. Uddin MS, Rahman MM, Jakaria M, et al. Estrogen signaling in Alzheimer's disease: molecular insights and therapeutic targets for Alzheimer's dementia. Mol Neurobiol. 2020;57:2654-70.
130. Guglielmotto M, Manassero G, Vasciaveo V, Venezia M, Tabaton M, Tamagno E. Estrogens inhibit amyloid-β-mediated paired helical filament-like conformation of Tau through antioxidant activity and miRNA 218 regulation in hTau mice. J Alzheimers Dis. 2020;77:1339-51.
131. Zhang Y, Chen H, Li R, Sterling K, Song W. Amyloid β-based therapy for Alzheimer's disease: challenges, successes and future. Signal Transduct Target Ther. 2023;8:248.
132. Ali N, Sohail R, Jaffer SR, et al. The role of estrogen therapy as a protective factor for Alzheimer's disease and dementia in postmenopausal women: a comprehensive review of the literature. Cureus. 2023;15:e43053.
133. Qin Y, An D, Xu W, et al. Estradiol replacement at the critical period protects hippocampal neural stem cells to improve cognition in APP/PS1 mice. Front Aging Neurosci. 2020;12:240.
134. Li R, He P, Cui J, Staufenbiel M, Harada N, Shen Y. Brain endogenous estrogen levels determine responses to estrogen replacement therapy via regulation of BACE1 and NEP in female Alzheimer's transgenic mice. Mol Neurobiol. 2013;47:857-67.
135. Qin P, Ma Y, Liu M, et al. Loss of estrogen efficacy against hippocampus damage in long-term OVX mice is related to the reduction of hippocampus local estrogen production and estrogen receptor degradation. Mol Neurobiol. 2020;57:3540-51.
136. Li J, Siegel M, Yuan M, et al. Estrogen enhances neurogenesis and behavioral recovery after stroke. J Cereb Blood Flow Metab. 2011;31:413-25.
137. Zheng JY, Liang KS, Wang XJ, Zhou XY, Sun J, Zhou SN. Chronic estradiol administration during the early stage of Alzheimer's disease pathology rescues adult hippocampal neurogenesis and ameliorates cognitive deficits in Aβ1-42 mice. Mol Neurobiol. 2017;54:7656-69.