REFERENCES
1. Mcaloon CJ, Osman F, Glennon P, Lim PB, Hayat SA. Chapter 4 - Global epidemiology and incidence of cardiovascular disease; 2016. pp. 57-96.
2. Bozkurt B, Ahmad T, Alexander KM, et al. Heart failure epidemiology and outcomes statistics: a report of the heart failure society of America. J Card Fail 2023;29:1412-51.
3. Benjamin EJ, Muntner P, Alonso A, et al. Heart disease and stroke statistics-2019 update: a report from the American heart association. Circulation 2019;139:e56-528.
4. Li H, Hastings MH, Rhee J, Trager LE, Roh JD, Rosenzweig A. Targeting age-related pathways in heart failure. Circ Res 2020;126:533-51.
5. North BJ, Sinclair DA. The intersection between aging and cardiovascular disease. Circ Res 2012;110:1097-108.
6. Daneshgar N, Rabinovitch PS, Dai DF. TOR signaling pathway in cardiac aging and heart failure. Biomolecules 2021;11:168.
7. Lakatta EG, Levy D. Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: Part I: aging arteries: a “set up” for vascular disease. Circulation 2003;107:139-46.
8. Lakatta EG, Levy D. Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: Part II: the aging heart in health: links to heart disease. Circulation 2003;107:346-54.
9. Pandey A, Kraus WE, Brubaker PH, Kitzman DW. Healthy aging and cardiovascular function: invasive hemodynamics during rest and exercise in 104 healthy volunteers. JACC Heart Fail 2020;8:111-21.
10. Borlaug BA, Olson TP, Lam CS, et al. Global cardiovascular reserve dysfunction in heart failure with preserved ejection fraction. J Am Coll Cardiol 2010;56:845-54.
11. Upadhya B, Rocco M, Lewis CE, et al. Effect of intensive blood pressure treatment on heart failure events in the systolic blood pressure reduction intervention trial. Circ Heart Fail 2017;10:e003613.
12. Mele D, Beccari R, Pedrizzetti G. Effect of aging on intraventricular kinetic energy and energy dissipation. J Cardiovasc Dev Dis 2023;10:308.
13. Kersten J, Hackenbroch C, Bouly M, Tyl B, Bernhardt P. What is normal for an aging heart?: A prospective CMR cohort study. J Cardiovasc Imaging 2022;30:202-11.
14. Kuro-o M, Matsumura Y, Aizawa H, et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 1997;390:45-51.
15. Shiraki-Iida T, Aizawa H, Matsumura Y, et al. Structure of the mouse klotho gene and its two transcripts encoding membrane and secreted protein. FEBS Lett 1998;424:6-10.
16. Li SA, Watanabe M, Yamada H, Nagai A, Kinuta M, Takei K. Immunohistochemical localization of Klotho protein in brain, kidney, and reproductive organs of mice. Cell Struct Funct 2004;29:91-9.
17. Kale A, Sankrityayan H, Anders HJ, Gaikwad AB. Epigenetic and non-epigenetic regulation of Klotho in kidney disease. Life Sci 2021;264:118644.
18. Wu SE, Chen WL. Soluble klotho as an effective biomarker to characterize inflammatory states. Ann Med 2022;54:1520-9.
19. Xu Y, Sun Z. Molecular basis of Klotho: from gene to function in aging. Endocr Rev 2015;36:174-93.
20. Lin W, Wu X, Wen J, et al. Nicotinamide retains Klotho expression and ameliorates rhabdomyolysis-induced acute kidney injury. Nutrition 2021;91-2:111376.
21. Zhou Q, Lin S, Tang R, Veeraragoo P, Peng W, Wu R. Role of fosinopril and valsartan on klotho gene expression induced by angiotensin II in rat renal tubular epithelial cells. Kidney Blood Press Res 2010;33:186-92.
22. Marsell R, Krajisnik T, Göransson H, et al. Gene expression analysis of kidneys from transgenic mice expressing fibroblast growth factor-23. Nephrol Dial Transplant 2008;23:827-33.
24. Azuma M, Koyama D, Kikuchi J, et al. Promoter methylation confers kidney-specific expression of the Klotho gene. FASEB J 2012;26:4264-74.
25. Lee J, Jeong DJ, Kim J, et al. The anti-aging gene KLOTHO is a novel target for epigenetic silencing in human cervical carcinoma. Mol Cancer 2010;9:109.
26. Han X, Sun Z. Epigenetic regulation of KL (Klotho) via H3K27me3 (histone 3 Lysine [K] 27 trimethylation) in renal tubule cells. Hypertension 2020;75:1233-41.
27. Hu MC, Shi M, Zhang J, Quiñones H, Kur-o M, Moe OW. Klotho deficiency is an early biomarker of renal ischemia-reperfusion injury and its replacement is protective. Kidney Int 2010;78:1240-51.
28. Hu MC, Shi M, Zhang J, et al. Renal production, uptake, and handling of circulating αKlotho. J Am Soc Nephrol 2016;27:79-90.
29. Chen CD, Podvin S, Gillespie E, Leeman SE, Abraham CR. Insulin stimulates the cleavage and release of the extracellular domain of Klotho by ADAM10 and ADAM17. Proc Natl Acad Sci USA 2007;104:19796-801.
30. Kurosu H, Yamamoto M, Clark JD, et al. Suppression of aging in mice by the hormone Klotho. Science 2005;309:1829-33.
32. Matsumura Y, Aizawa H, Shiraki-Iida T, Nagai R, Kuro-o M, Nabeshima Y. Identification of the human klotho gene and its two transcripts encoding membrane and secreted klotho protein. Biochem Biophys Res Commun 1998;242:626-30.
33. Baranowska B, Kochanowski J. The metabolic, neuroprotective cardioprotective and antitumor effects of the Klotho protein. Neuro Endocrinol Lett 2020;41:69-75.
34. Martin A, David V, Quarles LD. Regulation and function of the FGF23/klotho endocrine pathways. Physiol Rev 2012;92:131-55.
35. Chang Q, Hoefs S, van der Kemp AW, Topala CN, Bindels RJ, Hoenderop JG. The beta-glucuronidase klotho hydrolyzes and activates the TRPV5 channel. Science 2005;310:490-3.
36. Cha SK, Hu MC, Kurosu H, Kuro-o M, Moe O, Huang CL. Regulation of renal outer medullary potassium channel and renal K+ excretion by Klotho. Mol Pharmacol 2009;76:38-46.
37. Cha SK, Ortega B, Kurosu H, Rosenblatt KP, Kur-o M, Huang CL. Removal of sialic acid involving Klotho causes cell-surface retention of TRPV5 channel via binding to galectin-1. Proc Natl Acad Sci USA 2008;105:9805-10.
38. Kusaba T, Okigaki M, Matui A, et al. Klotho is associated with VEGF receptor-2 and the transient receptor potential canonical-1 Ca2+ channel to maintain endothelial integrity. Proc Natl Acad Sci USA 2010;107:19308-13.
39. Utsugi T, Ohno T, Ohyama Y, et al. Decreased insulin production and increased insulin sensitivity in the klotho mutant mouse, a novel animal model for human aging. Metabolism 2000;49:1118-23.
40. Buendía P, Ramírez R, Aljama P, Carracedo J. Chapter Five - Klotho prevents translocation of NFκB; 2016. pp. 119-50.
41. Yuan Q, Ren Q, Li L, et al. A Klotho-derived peptide protects against kidney fibrosis by targeting TGF-β signaling. Nat Commun 2022;13:438.
42. Kim JH, Xie J, Hwang KH, et al. Klotho may ameliorate proteinuria by targeting TRPC6 channels in podocytes. J Am Soc Nephrol 2017;28:140-51.
43. Charrin E, Dabaghie D, Sen I, et al. Soluble Klotho protects against glomerular injury through regulation of ER stress response. Commun Biol 2023;6:208.
44. Hu MC, Shi M, Gillings N, et al. Recombinant α-Klotho may be prophylactic and therapeutic for acute to chronic kidney disease progression and uremic cardiomyopathy. Kidney Int 2017;91:1104-14.
45. Leon J, Moreno AJ, Garay BI, et al. Peripheral elevation of a klotho fragment enhances brain function and resilience in young, aging, and α-synuclein transgenic mice. Cell Rep 2017;20:1360-71.
46. Park C, Hahn O, Gupta S, et al. Platelet factors are induced by longevity factor klotho and enhance cognition in young and aging mice. Nat Aging 2023;3:1067-78.
47. Li D, Jing D, Liu Z, Chen Y, Huang F, Behnisch T. Enhanced expression of secreted α-klotho in the hippocampus alters nesting behavior and memory formation in mice. Front Cell Neurosci 2019;13:133.
48. Zeng CY, Yang TT, Zhou HJ, et al. Lentiviral vector-mediated overexpression of Klotho in the brain improves Alzheimer's disease-like pathology and cognitive deficits in mice. Neurobiol Aging 2019;78:18-28.
49. Zhao Y, Zeng CY, Li XH, Yang TT, Kuang X, Du JR. Klotho overexpression improves amyloid-β clearance and cognition in the APP/PS1 mouse model of Alzheimer's disease. Aging Cell 2020;19:e13239.
50. Semba RD, Moghekar AR, Hu J, et al. Klotho in the cerebrospinal fluid of adults with and without Alzheimer's disease. Neurosci Lett 2014;558:37-40.
51. Yang Z, Ma Y, Wang Y, et al. The prognostic value of serum α-klotho in age-related diseases among the US population: a prospective population-based cohort study. Prev Med Rep 2024;42:102730.
52. Yuguang L, Chang Y, Chen N, et al. Serum klotho as a novel biomarker for metabolic syndrome: findings from a large national cohort. Front Endocrinol 2024;15:1295927.
53. Drew DA, Katz R, Kritchevsky S, et al. Association between soluble klotho and change in kidney function: the health aging and body composition study. J Am Soc Nephrol 2017;28:1859-66.
54. Wen X, Li S, Zhang Y, et al. Recombinant human klotho protects against hydrogen peroxide-mediated injury in human retinal pigment epithelial cells via the PI3K/Akt-Nrf2/HO-1 signaling pathway. Bioengineered 2022;13:11767-81.
55. Semba RD, Cappola AR, Sun K, et al. Plasma klotho and cardiovascular disease in adults. J Am Geriatr Soc 2011;59:1596-601.
56. Chen K, Wang S, Sun QW, Zhang B, Ullah M, Sun Z. Klotho deficiency causes heart aging via impairing the Nrf2-GR pathway. Circ Res 2021;128:492-507.
57. Xie J, Cha SK, An SW, Kur-o M, Birnbaumer L, Huang CL. Cardioprotection by Klotho through downregulation of TRPC6 channels in the mouse heart. Nat Commun 2012;3:1238.
58. Song S, Gao P, Xiao H, Xu Y, Si LY. Klotho suppresses cardiomyocyte apoptosis in mice with stress-induced cardiac injury via downregulation of endoplasmic reticulum stress. PLoS One 2013;8:e82968.
59. Song S, Si LY. Klotho ameliorated isoproterenol-induced pathological changes in cardiomyocytes via the regulation of oxidative stress. Life Sci 2015;135:118-23.
60. Yang K, Wang C, Nie L, et al. Klotho protects against indoxyl sulphate-induced myocardial hypertrophy. J Am Soc Nephrol 2015;26:2434-46.
61. Bi J, Zheng M, Li K, et al. Relationships of serum FGF23 and α-klotho with atherosclerosis in patients with type 2 diabetes mellitus. Cardiovasc Diabetol 2024;23:128.
62. Ajay AK, Zhu LJ, Zhao L, et al. Local vascular Klotho mediates diabetes-induced atherosclerosis via ERK1/2 and PI3-kinase-dependent signaling pathways. Atherosclerosis 2024;396:118531.
63. Yamamoto M, Clark JD, Pastor JV, et al. Regulation of oxidative stress by the anti-aging hormone klotho. J Biol Chem 2005;280:38029-34.
64. Lim SW, Jin L, Luo K, et al. Klotho enhances FoxO3-mediated manganese superoxide dismutase expression by negatively regulating PI3K/AKT pathway during tacrolimus-induced oxidative stress. Cell Death Dis 2017;8:e2972.
65. Sun X, Chen L, He Y, Zheng L. Circulating α-klotho levels in relation to cardiovascular diseases: a mendelian randomization study. Front Endocrinol 2022;13:842846.
66. Liu H, Fergusson MM, Castilho RM, et al. Augmented Wnt signaling in a mammalian model of accelerated aging. Science 2007;317:803-6.
67. Ahrens HE, Huettemeister J, Schmidt M, Kaether C, von Maltzahn J. Klotho expression is a prerequisite for proper muscle stem cell function and regeneration of skeletal muscle. Skelet Muscle 2018;8:20.
68. McKee CM, Chapski DJ, Wehling-Henricks M, et al. The anti-aging protein Klotho affects early postnatal myogenesis by downregulating Jmjd3 and the canonical Wnt pathway. FASEB J 2022;36:e22192.
69. Ni W, Zhang Y, Yin Z. The protective mechanism of Klotho gene-modified bone marrow mesenchymal stem cells on acute kidney injury induced by rhabdomyolysis. Regen Ther 2021;18:255-67.
70. Laszczyk AM, Fox-Quick S, Vo HT, et al. Klotho regulates postnatal neurogenesis and protects against age-related spatial memory loss. Neurobiol Aging 2017;59:41-54.
71. Picca A, Mankowski RT, Burman JL, et al. Mitochondrial quality control mechanisms as molecular targets in cardiac ageing. Nat Rev Cardiol 2018;15:543-54.
72. Marín-García J. Mitochondrial DNA repair: a novel therapeutic target for heart failure. Heart Fail Rev 2016;21:475-87.
73. Anderson AP, Luo X, Russell W, Yin YW. Oxidative damage diminishes mitochondrial DNA polymerase replication fidelity. Nucleic Acids Res 2020;48:817-29.
74. Botto N, Rizza A, Colombo MG, et al. Evidence for DNA damage in patients with coronary artery disease. Mutat Res 2001;493:23-30.
75. Shukla PC, Singh KK, Quan A, et al. BRCA1 is an essential regulator of heart function and survival following myocardial infarction. Nat Commun 2011;2:593.
76. Gray K, Kumar S, Figg N, et al. Effects of DNA damage in smooth muscle cells in atherosclerosis. Circ Res 2015;116:816-26.
77. Daneshgar N, Lan R, Regnier M, Mackintosh SG, Venkatasubramanian R, Dai DF. Klotho enhances diastolic function in aged hearts through Sirt1-mediated pathways. Geroscience 2024;46:4729-41.
78. Higo T, Naito AT, Sumida T, et al. DNA single-strand break-induced DNA damage response causes heart failure. Nat Commun 2017;8:15104.
79. Baechle JJ, Chen N, Makhijani P, Winer S, Furman D, Winer DA. Chronic inflammation and the hallmarks of aging. Mol Metab 2023;74:101755.
80. Thomas TP, Grisanti LA. The dynamic interplay between cardiac inflammation and fibrosis. Front Physiol 2020;11:529075.
81. Tamiato A, Tombor LS, Fischer A, et al. Age-dependent RGS5 loss in pericytes induces cardiac dysfunction and fibrosis. Circ Res 2024;134:1240-55.
82. Zhao Y, Banerjee S, Dey N, et al. Klotho depletion contributes to increased inflammation in kidney of the db/db mouse model of diabetes via RelA (serine)536 phosphorylation. Diabetes 2011;60:1907-16.
83. Zhou X, Lei H, Sun Z. Participation of immune cells in klotho deficiency-induced salt-sensitive hypertension. FASEB J 2015;29:667.3.
84. Witkowski JM, Soroczyńska-Cybula M, Bryl E, Smoleńska Z, Jóźwik A. Klotho-a common link in physiological and rheumatoid arthritis-related aging of human CD4+ lymphocytes. J Immunol 2007;178:771-7.
85. Junho CVC, González-Lafuente L, Neres-Santos RS, et al. Klotho relieves inflammation and exerts a cardioprotective effect during renal ischemia/reperfusion-induced cardiorenal syndrome. Biomed Pharmacother 2022;153:113515.
86. Gao H, Wang K, Suarez JA, et al. Gut lumen-leaked microbial DNA causes myocardial inflammation and impairs cardiac contractility in ageing mouse heart. Front Immunol 2023;14:1216344.
87. Castillo RF, Pérez RG, González AL. Beneficial effects of physical exercise on the osteo-renal Klotho-FGF-23 axis in chronic kidney disease: a systematic review with meta-analysis. Int J Med Sci 2024;21:332-40.
88. Kanbay M, Copur S, Ozbek L, et al. Klotho: a potential therapeutic target in aging and neurodegeneration beyond chronic kidney disease-a comprehensive review from the ERA CKD-MBD working group. Clin Kidney J 2024;17:sfad276.
89. Kirschke S, Ogunsulire I, Selvakumar B, et al. The metalloprotease ADAM10 generates soluble interleukin-2 receptor alpha (sCD25) in vivo. J Biol Chem 2022;298:101910.