REFERENCES

1. Ishida Y, Agata Y, Shibahara K, Honjo T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J. 1992;11:3887-95.

2. Chambers CA, Krummel MF, Boitel B, et al. The role of CTLA-4 in the regulation and initiation of T-cell responses. Immunol Rev. 1996;153:27-46.

3. Dong H, Zhu G, Tamada K, Chen L. B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat Med. 1999;5:1365-9.

4. Freeman GJ, Long AJ, Iwai Y, et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med. 2000;192:1027-34.

5. Martín P, Blanco-Domínguez R, Sánchez-Díaz R. Novel human immunomodulatory T cell receptors and their double-edged potential in autoimmunity, cardiovascular disease and cancer. Cell Mol Immunol. 2021;18:919-35.

6. Molina GE, Zubiri L, Cohen JV, et al. Temporal trends and outcomes among patients admitted for immune-related adverse events: a single-center retrospective cohort study from 2011 to 2018. Oncologist. 2021;26:514-22.

7. Xu C, Chen YP, Du XJ, et al. Comparative safety of immune checkpoint inhibitors in cancer: systematic review and network meta-analysis. BMJ. 2018;363:k4226.

8. Zheng Y, Kim R, Yu T, et al. Real-world clinical and economic outcomes in selected immune-related adverse events among patients with cancer receiving immune checkpoint inhibitors. Oncologist. 2021;26:e2002-12.

9. Martins F, Sofiya L, Sykiotis GP, et al. Adverse effects of immune-checkpoint inhibitors: epidemiology, management and surveillance. Nat Rev Clin Oncol. 2019;16:563-80.

10. Chen B, Xu A, He Y, et al. The cardiac-related adverse events of PD-1/PD-L1 immunotherapy in advanced or metastatic lung cancer: a RCT-based meta-analysis. Support Care Cancer. 2024;32:140.

11. Agostinetto E, Eiger D, Lambertini M, et al. Cardiotoxicity of immune checkpoint inhibitors: a systematic review and meta-analysis of randomised clinical trials. Eur J Cancer. 2021;148:76-91.

12. Ho CC, Wu SL, Tsai HY, Hu YW, Chang YL. A retrospective cohort study on the cardiotoxicity incidence rates of immune checkpoint inhibitors for oncology patients. J Chin Med Assoc. 2023;86:499-505.

13. Chitturi KR, Xu J, Araujo-Gutierrez R, et al. Immune checkpoint inhibitor-related adverse cardiovascular events in patients with lung cancer. JACC CardioOncol. 2019;1:182-92.

14. Bishnoi R, Shah C, Blaes A, Bian J, Hong YR. Cardiovascular toxicity in patients treated with immunotherapy for metastatic non-small cell lung cancer: a SEER-medicare study: CVD outcomes with the use of ICI in mNSCLC. Lung Cancer. 2020;150:172-7.

15. Lal JC, Brown SA, Collier P, Cheng F. A retrospective analysis of cardiovascular adverse events associated with immune checkpoint inhibitors. Cardiooncology. 2021;7:19.

16. Dolladille C, Akroun J, Morice PM, et al. Cardiovascular immunotoxicities associated with immune checkpoint inhibitors: a safety meta-analysis. Eur Heart J. 2021;42:4964-77.

17. Salem JE, Manouchehri A, Moey M, et al. Cardiovascular toxicities associated with immune checkpoint inhibitors: an observational, retrospective, pharmacovigilance study. Lancet Oncol. 2018;19:1579-89.

18. Zhang C, Wei F, Ma W, Zhang J. Immune-related cardiovascular toxicities of PD-1/PD-L1 inhibitors in solid tumors: an updated systematic review and meta-analysis. Front Immunol. 2024;15:1255825.

19. Liu S, Gao W, Ning Y, et al. Cardiovascular toxicity with PD-1/PD-L1 inhibitors in cancer patients: a systematic review and meta-analysis. Front Immunol. 2022;13:908173.

20. Suzuki Y, Kaneko H, Tamura Y, et al. Cardiovascular events after the initiation of immune checkpoint inhibitors. Heliyon. 2023;9:e16373.

21. Rubio-Infante N, Ramírez-Flores YA, Castillo EC, Lozano O, García-Rivas G, Torre-Amione G. Cardiotoxicity associated with immune checkpoint inhibitor therapy: a meta-analysis. Eur J Heart Fail. 2021;23:1739-47.

22. D'Souza M, Nielsen D, Svane IM, et al. The risk of cardiac events in patients receiving immune checkpoint inhibitors: a nationwide Danish study. Eur Heart J. 2021;42:1621-31.

23. Chiang CH, Chiang CH, Ma KS, et al. The incidence and risk of cardiovascular events associated with immune checkpoint inhibitors in Asian populations. Jpn J Clin Oncol. 2022;52:1389-98.

24. Naqash AR, Moey MYY, Cherie Tan XW, et al. Major adverse cardiac events with immune checkpoint inhibitors: a pooled analysis of trials sponsored by the national cancer institute-cancer therapy evaluation program. J Clin Oncol. 2022;40:3439-52.

25. Waheed N, Fradley MG, DeRemer DL, et al. Newly diagnosed cardiovascular disease in patients treated with immune checkpoint inhibitors: a retrospective analysis of patients at an academic tertiary care center. Cardiooncology. 2021;7:10.

26. Mascolo A, Scavone C, Ferrajolo C, et al. Immune checkpoint inhibitors and cardiotoxicity: an analysis of spontaneous reports in EudraVigilance. Drug Saf. 2021;44:957-71.

27. Chen C, Chen T, Liang J, et al. Cardiotoxicity induced by immune checkpoint inhibitors: a pharmacovigilance study from 2014 to 2019 based on FAERS. Front Pharmacol. 2021;12:616505.

28. Andres MS, Ramalingam S, Rosen SD, et al. The spectrum of cardiovascular complications related to immune-checkpoint inhibitor treatment: including myocarditis and the new entity of non inflammatory left ventricular dysfunction. Cardiooncology. 2022;8:21.

29. Kanbayashi Y, Shimizu T, Anzai M, Kawai R, Uchida M. Evaluation of cardiac adverse events with nivolumab using a Japanese real-world database. Clin Drug Investig. 2023;43:177-84.

30. Malaty MM, Amarasekera AT, Li C, Scherrer-Crosbie M, Tan TC. Incidence of immune checkpoint inhibitor mediated cardiovascular toxicity: a systematic review and meta-analysis. Eur J Clin Invest. 2022;52:e13831.

31. Amiri-kordestani L, Moslehi J, Cheng J, et al. Cardiovascular adverse events in immune checkpoint inhibitor clinical trials: a U.S. food and drug administration pooled analysis. JCO. 2018;36:3009-3009.

32. Zhang XT, Ge N, Xiang ZJ, Liu T. Immune checkpoint inhibitor-related adverse cardiac events in patients with lung cancer: a systematic review and meta-analysis. Cancer Cell Int. 2022;22:363.

33. Nso N, Antwi-Amoabeng D, Beutler BD, et al. Cardiac adverse events of immune checkpoint inhibitors in oncology patients: a systematic review and meta-analysis. World J Cardiol. 2020;12:584-98.

34. Wang Y, Cui C, Deng L, Wang L, Ren X. Cardiovascular toxicity profiles of immune checkpoint inhibitors with or without angiogenesis inhibitors: a real-world pharmacovigilance analysis based on the FAERS database from 2014 to 2022. Front Immunol. 2023;14:1127128.

35. Torrente M, Blanco M, Franco F, et al. Assessing the risk of cardiovascular events in patients receiving immune checkpoint inhibitors. Front Cardiovasc Med. 2022;9:1062858.

36. Zhang C, Chen Z, Mo C, et al. Real-world cardiovascular toxicity of immune checkpoint inhibitors in cancer patients: a retrospective controlled cohort study. Am J Cancer Res. 2021;11:6074-85.

37. Mahmood SS, Fradley MG, Cohen JV, et al. Myocarditis in patients treated with immune checkpoint inhibitors. J Am Coll Cardiol. 2018;71:1755-64.

38. Li C, Bhatti SA, Ying J. Immune checkpoint inhibitors-associated cardiotoxicity. Cancers. 2022;14:1145.

39. Chahine J, Collier P, Maroo A, Tang WHW, Klein AL. Myocardial and pericardial toxicity associated with immune checkpoint inhibitors in cancer patients. JACC Case Rep. 2020;2:191-9.

40. Moey MYY, Tomdio AN, McCallen JD, et al. Characterization of immune checkpoint inhibitor-related cardiotoxicity in lung cancer patients from a rural setting. JACC CardioOncol. 2020;2:491-502.

41. Faubry C, Faure M, Toublanc AC, et al. A prospective study to detect immune checkpoint inhibitors associated with myocarditis among patients treated for lung cancer. Front Cardiovasc Med. 2022;9:878211.

42. Wang F, Sun X, Qin S, et al. A retrospective study of immune checkpoint inhibitor-associated myocarditis in a single center in China. Chin Clin Oncol. 2020;9:16.

43. Caforio AL, Pankuweit S, Arbustini E, et al. Current state of knowledge on aetiology, diagnosis, management, and therapy of myocarditis: a position statement of the European Society of Cardiology Working Group on myocardial and pericardial diseases. Eur Heart J. 2013;34:2636-48, 2648a.

44. Bonaca MP, Olenchock BA, Salem JE, et al. Myocarditis in the setting of cancer therapeutics: proposed case definitions for emerging clinical syndromes in cardio-oncology. Circulation. 2019;140:80-91.

45. Furukawa A, Tamura Y, Taniguchi H, et al. Prospective screening for myocarditis in cancer patients treated with immune checkpoint inhibitors. J Cardiol. 2023;81:63-7.

46. Stavrakis S, Yu X, Patterson E, et al. Activating autoantibodies to the beta-1 adrenergic and m2 muscarinic receptors facilitate atrial fibrillation in patients with Graves' hyperthyroidism. J Am Coll Cardiol. 2009;54:1309-16.

47. Donermeyer DL, Beisel KW, Allen PM, Smith SC. Myocarditis-inducing epitope of myosin binds constitutively and stably to I-Ak on antigen-presenting cells in the heart. J Exp Med. 1995;182:1291-300.

48. Moslehi J, Lichtman AH, Sharpe AH, Galluzzi L, Kitsis RN. Immune checkpoint inhibitor-associated myocarditis: manifestations and mechanisms. J Clin Invest. 2021;131:145186.

49. Lv H, Havari E, Pinto S, et al. Impaired thymic tolerance to α-myosin directs autoimmunity to the heart in mice and humans. J Clin Invest. 2011;121:1561-73.

50. Axelrod ML, Meijers WC, Screever EM, et al. T cells specific for α-myosin drive immunotherapy-related myocarditis. Nature. 2022;611:818-26.

51. Tsuruoka K, Wakabayashi S, Morihara H, et al. Exacerbation of autoimmune myocarditis by an immune checkpoint inhibitor is dependent on its time of administration in mice. Int J Cardiol. 2020;313:67-75.

52. Won T, Kalinoski HM, Wood MK, et al. Cardiac myosin-specific autoimmune T cells contribute to immune-checkpoint-inhibitor-associated myocarditis. Cell Rep. 2022;41:111611.

53. Kalinoski H, Daoud A, Rusinkevich V, et al. Injury-induced myosin-specific tissue-resident memory T cells drive immune checkpoint inhibitor myocarditis. Proc Natl Acad Sci USA. 2024;121:e2323052121.

54. Blum SM, Zlotoff DA, Smith NP, et al. Immune responses in checkpoint myocarditis across heart, blood and tumour. Nature. 2024;636:215-23.

55. Gao J, Wang Y, Lu L, et al. Peripheral immune mapping and multi-omics analysis in Pd-1 inhibitor-induced myocarditis. J Leukoc Biol. 2023;114:164-79.

56. Tay WT, Fang YH, Beh ST, et al. Programmed cell death-1: programmed cell death-ligand 1 interaction protects human cardiomyocytes against t-cell mediated inflammation and apoptosis response in vitro. Int J Mol Sci. 2020;21:2399.

57. Du S, Zhou L, Alexander GS, et al. PD-1 modulates radiation-induced cardiac toxicity through cytotoxic t lymphocytes. J Thorac Oncol. 2018;13:510-20.

58. Ida M, Nakamori S, Ishida M, Dohi K. Management of immune checkpoint inhibitor myocarditis: a serial cardiovascular magnetic resonance T2 mapping approach. Eur Heart J. 2021;42:2869.

59. Oh DY, Cham J, Zhang L, et al. Immune toxicities elicted by CTLA-4 blockade in cancer patients are associated with early diversification of the T-cell repertoire. Cancer Res. 2017;77:1322-30.

60. Bockstahler M, Fischer A, Goetzke CC, et al. Heart-specific immune responses in an animal model of autoimmune-related myocarditis mitigated by an immunoproteasome inhibitor and genetic ablation. Circulation. 2020;141:1885-902.

61. Gergely TG, Kucsera D, Tóth VE, et al. Characterization of immune checkpoint inhibitor-induced cardiotoxicity reveals interleukin-17A as a driver of cardiac dysfunction after anti-PD-1 treatment. Br J Pharmacol. 2023;180:740-61.

62. Zhang Y, Sun C, Li Y, et al. Hormonal therapies up-regulate MANF and overcome female susceptibility to immune checkpoint inhibitor myocarditis. Sci Transl Med. 2022;14:eabo1981.

63. Chen Z, Wang M, Gao S, Guo H, Wang G, Zhou G. Cardiotoxicity of anti-PD-L1 antibody and the effect of levothyroxine in Attenuating the related mortality in mice. Zhongguo Fei Ai Za Zhi. 2021;24:394-403.

64. Ji C, Roy MD, Golas J, et al. Myocarditis in cynomolgus monkeys following treatment with immune checkpoint inhibitors. Clin Cancer Res. 2019;25:4735-48.

65. Zhang H, Lin J, Shen Y, Pan J, Wang C, Cheng L. Protective effect of crocin on immune checkpoint inhibitors-related myocarditis through inhibiting NLRP3 mediated pyroptosis in cardiomyocytes via NF-κB pathway. J Inflamm Res. 2022;15:1653-66.

66. Tarrio ML, Grabie N, Bu DX, Sharpe AH, Lichtman AH. PD-1 protects against inflammation and myocyte damage in T cell-mediated myocarditis. J Immunol. 2012;188:4876-84.

67. Horiguchi H, Kadomatsu T, Yamashita T, et al. ANGPTL2 promotes immune checkpoint inhibitor-related murine autoimmune myocarditis. Commun Biol. 2023;6:965.

68. Rubio-Infante N, Castillo EC, Alves-Figueiredo H, et al. Previous cardiovascular injury is a prerequisite for immune checkpoint inhibitor-associated lethal myocarditis in mice. ESC Heart Fail. 2024;11:1249-57.

69. Michel L, Helfrich I, Hendgen-Cotta UB, et al. Targeting early stages of cardiotoxicity from anti-PD1 immune checkpoint inhibitor therapy. Eur Heart J. 2022;43:316-29.

70. Yu J, Long B, Li Z, et al. Central memory CD4+ T cells play a protective role against immune checkpoint inhibitor-associated myocarditis. Cardiovasc Res. 2024;120:1442-55.

71. Johnson DB, Balko JM, Compton ML, et al. Fulminant myocarditis with combination immune checkpoint blockade. N Engl J Med. 2016;375:1749-55.

72. Tsuruda T, Sato Y, Kajihara K, et al. Non-canonical expression of cardiac troponin-T in neuroendocrine ethmoid sinus carcinoma following immune checkpoint blockade. Front Cardiovasc Med. 2019;6:124.

73. Chen C, Liu JB, Bian ZP, et al. Cardiac troponin I is abnormally expressed in non-small cell lung cancer tissues and human cancer cells. Int J Clin Exp Pathol. 2014;7:1314-24.

74. Tsuruda T, Sato Y, Tomita M, et al. Aberrant expression of cardiac troponin-T in lung cancer tissues in association with pathological severity. Front Cardiovasc Med. 2022;9:833649.

75. Fu S, Guo Z, Xu X, et al. Protective effect of low-intensity pulsed ultrasound on immune checkpoint inhibitor-related myocarditis via fine-tuning CD4+ T-cell differentiation. Cancer Immunol Immunother. 2024;73:15.

76. Racine JJ, Bachman JF, Zhang JG, et al. Murine MHC-deficient nonobese diabetic mice carrying human HLA-DQ8 develop severe myocarditis and myositis in response to anti-PD-1 immune checkpoint inhibitor cancer therapy. J Immunol. 2024;212:1287-306.

77. Wang J, Okazaki IM, Yoshida T, et al. PD-1 deficiency results in the development of fatal myocarditis in MRL mice. Int Immunol. 2010;22:443-52.

78. Wei SC, Meijers WC, Axelrod ML, et al. A genetic mouse model recapitulates immune checkpoint inhibitor-associated myocarditis and supports a mechanism-based therapeutic intervention. Cancer Discov. 2021;11:614-25.

79. Ma P, Liu J, Qin J, et al. Expansion of pathogenic cardiac macrophages in immune checkpoint inhibitor myocarditis. Circulation. 2024;149:48-66.

80. Okazaki T, Okazaki IM, Wang J, et al. PD-1 and LAG-3 inhibitory co-receptors act synergistically to prevent autoimmunity in mice. J Exp Med. 2011;208:395-407.

81. van der Vegt SA, Wang YJ, Polonchuk L, Wang K, Waters SL, Baker RE. A model-informed approach to assess the risk of immune checkpoint inhibitor-induced autoimmune myocarditis. Front Pharmacol. 2022;13:966180.

82. van der Vegt SA, Wang YJ, Polonchuk L, Wang K, Waters SL, Baker RE. Mathematical modelling of autoimmune myocarditis and the effects of immune checkpoint inhibitors. J Theor Biol. 2022;537:111002.

83. Liu YX, Song YJ, Liu XH, et al. PD-1 inhibitor induces myocarditis by reducing regulatory T cells, activating inflammatory responses, promoting myocardial apoptosis and autophagy. Cytokine. 2022;157:155932.

84. Yang X, Duan X, Xia Z, Huang R, He K, Xiang G. The regulation network of glycerolipid metabolism as coregulators of immunotherapy-related myocarditis. Cardiovasc Ther. 2023;2023:8774971.

85. Blum SM, Zlotoff DA, Smith NP, et al. Immune responses in checkpoint myocarditis across heart, blood, and tumor. bioRxiv. 2023:2023.

86. Yang K, Zhang M, Li D, Yu Y, Cao F, Wan G. Identification of shared mechanisms and targets between immune checkpoint inhibitor-associated myocarditis and autoimmune myocarditis. Eur J Inflamm. 2024;22:1721727X231223578.

87. Zhu H, Galdos FX, Lee D, et al. Identification of pathogenic immune cell subsets associated with checkpoint inhibitor-induced myocarditis. Circulation. 2022;146:316-35.

88. Cooper LT Jr, Wolf RA, Plautz GE, Kratt C, Lalchandani VB, Bond TC. Myocarditis associated with immune checkpoint inhibitors in patients with thymoma. JACC Adv. 2023;2:100428.

89. Fenioux C, Abbar B, Boussouar S, et al. Thymus alterations and susceptibility to immune checkpoint inhibitor myocarditis. Nat Med. 2023;29:3100-10.

90. Farag AA, Kharboush TG, Ibrahim NH, et al. Exploiting signal joint T cell receptor excision circle to investigate the impact of COVID-19 and autoimmune diseases on age prediction and immunosenescence. Biomedicines. 2022;10:3193.

91. Kayser C, Alberto FL, da Silva NP, Andrade LE. Decreased number of T cells bearing TCR rearrangement excision circles (TREC) in active recent onset systemic lupus erythematosus. Lupus. 2004;13:906-11.

92. Finke D, Heckmann MB, Salatzki J, et al. Comparative transcriptomics of immune checkpoint inhibitor myocarditis identifies guanylate binding protein 5 and 6 dysregulation. Cancers. 2021;13:2498.

93. Quagliariello V, Passariello M, Bisceglia I, et al. Combinatorial immune checkpoint blockade increases myocardial expression of NLRP-3 and secretion of H-FABP, NT-Pro-BNP, interleukin-1β and interleukin-6: biochemical implications in cardio-immuno-oncology. Front Cardiovasc Med. 2024;11:1232269.

94. Tsuruda T, Yoshikawa N, Kai M, et al. The cytokine expression in patients with cardiac complication after immune checkpoint inhibitor therapy. Intern Med. 2021;60:423-9.

95. Ali A, Caldwell R, Pina G, et al. Elevated IL-6 and tumor necrosis factor-α in immune checkpoint inhibitor myocarditis. Diseases. 2024;12:88.

96. Lou B, Guo M, Zheng T, et al. Single-cell RNA sequencing reveals the altered innate immunity in immune checkpoint inhibitor-related myocarditis. Immunology. 2024;172:235-51.

97. Ma P, Liu J, Qin J, et al. Expansion of disease specific cardiac macrophages in immune checkpoint inhibitor myocarditis. bioRxiv. 2023:2023.

98. Chen Y, Liu Y, Wang Y, et al. Prevotellaceae produces butyrate to alleviate PD-1/PD-L1 inhibitor-related cardiotoxicity via PPARα-CYP4X1 axis in colonic macrophages. J Exp Clin Cancer Res. 2022;41:1-21.

99. Xia W, Zou C, Chen H, Xie C, Hou M. Immune checkpoint inhibitor induces cardiac injury through polarizing macrophages via modulating microRNA-34a/Kruppel-like factor 4 signaling. Cell Death Dis. 2020;11:575.

100. Xia W, Chen H, Chen D, Ye Y, Xie C, Hou M. PD-1 inhibitor inducing exosomal miR-34a-5p expression mediates the cross talk between cardiomyocyte and macrophage in immune checkpoint inhibitor-related cardiac dysfunction. J Immunother Cancer. 2020;8:e001293.

101. Theivanthiran B, Evans KS, DeVito NC, et al. A tumor-intrinsic PD-L1/NLRP3 inflammasome signaling pathway drives resistance to anti-PD-1 immunotherapy. J Clin Invest. 2020;130:2570-86.

102. Balanescu DV, Donisan T, Palaskas N, et al. Immunomodulatory treatment of immune checkpoint inhibitor-induced myocarditis: pathway toward precision-based therapy. Cardiovasc Pathol. 2020;47:107211.

103. Siddiqui BA, Palaskas NL, Basu S, et al. Molecular pathways and cellular subsets associated with adverse clinical outcomes in overlapping immune-related myocarditis and myositis. Cancer Immunol Res. 2024;12:964-87.

104. Champion SN, Stone JR. Immune checkpoint inhibitor associated myocarditis occurs in both high-grade and low-grade forms. Mod Pathol. 2020;33:99-108.

105. Wong CK, Lam TH, Liao SY, Lau YM, Tse HF, So BYF. Immunopathogenesis of immune checkpoint inhibitor induced myocarditis: insights from experimental models and treatment implications. Biomedicines. 2023;11:107.

106. Zhang X, Gan Y, Zhu H, et al. Role of mitochondrial metabolism in immune checkpoint inhibitors-related myocarditis. Front Cardiovasc Med. 2023;10:1112222.

107. Zamami Y, Niimura T, Okada N, et al. Factors associated with immune checkpoint inhibitor-related myocarditis. JAMA Oncol. 2019;5:1635-7.

108. Cone EB, Haeuser L, Reese SW, et al. Immune checkpoint inhibitor monotherapy is associated with less cardiac toxicity than combination therapy. PLoS One. 2022;17:e0272022.

109. Moslehi JJ, Salem JE, Sosman JA, Lebrun-Vignes B, Johnson DB. Increased reporting of fatal immune checkpoint inhibitor-associated myocarditis. Lancet. 2018;391:933.

110. Zhong P, Zhang C, Guan H, Yan J, He M, Zhou X. Myocarditis and myasthenia gravis induced by immune checkpoint inhibitor in a patient with relapsed thymoma: a case report. Clin Case Rep. 2023;11:e7039.

111. Zhang B, Gyawali L, Liu Z, Du H, Yin Y. Camrelizumab-related lethal arrhythmias and myasthenic crisis in a patient with metastatic thymoma. Case Rep Cardiol. 2022;2022:4042909.

112. Zhou Z, Chen X, Liu G, Pu J, Wu J. Presence of multiple autoimmune antibodies involved in concurrent myositis and myocarditis and myasthenia gravis without thymoma: a case report. Front Neurol. 2019;10:770.

113. Seker D, Yildirim A. Fatal triad of checkpoint inhibitors: pembrolizumab induced myasthenia gravis with myositis and myocarditis in a patient with thymoma. NeuroAsia. 2023;28:439-43.

114. Konstantina T, Konstantinos R, Anastasios K, et al. Fatal adverse events in two thymoma patients treated with anti-PD-1 immune check point inhibitor and literature review. Lung Cancer. 2019;135:29-32.

115. Xie X, Wang L, Li Y, et al. Multi-organ immune-related adverse event is a risk factor of immune checkpoint inhibitor-associated myocarditis in cancer patients: a multi-center study. Front Immunol. 2022;13:879900.

116. Feng Y, Zheng P, Zhang W, et al. Immune checkpoint inhibitor myocarditis in thymic epithelial tumors: a case report and literature review. Transl Cancer Res. 2024;13:1208-18.

117. Liu M, Cheng X, Ni R, Zheng B, Huang S, Yang J. Cardiotoxicity of immune checkpoint inhibitors: a frequency network meta-analysis. Front Immunol. 2022;13:1006860.

118. Lessomo FY, Wang Z, Mukuka C. Comparative cardiotoxicity risk of pembrolizumab versus nivolumab in cancer patients undergoing immune checkpoint inhibitor therapy: a meta-analysis. Front Oncol. 2023;13:1080998.

119. Wang Q, Xiao F, Zeng Y, Zhu Q, Zhang H. PD-1/PD-L1 inhibitors-associated cardiac adverse events: a retrospective and real-world study based on the FDA adverse event reporting system (FAERS). Expert Opin Drug Saf. 2024;23:257-67.

120. Oren O, Yang EH, Molina JR, Bailey KR, Blumenthal RS, Kopecky SL. Cardiovascular health and outcomes in cancer patients receiving immune checkpoint inhibitors. Am J Cardiol. 2020;125:1920-6.

121. Haj-Yehia E, Mincu RI, Korste S, et al. High neutrophil-to-lymphocyte ratio is associated with cancer therapy-related cardiovascular toxicity in high-risk cancer patients under immune checkpoint inhibitor therapy. Clin Res Cardiol. 2024;113:301-12.

122. Zhang C, Chen Z, Qin S, Zhu Y, Shu L, Zuo Z. Incidence of adverse cardiovascular events associated with immune checkpoint inhibitors and risk factors for left ventricular dysfunction: a single-center prospective clinical study. Front Cardiovasc Med. 2023;10:1052699.

123. Vasbinder A, Chen Y, Procureur A, et al. Biomarker trends, incidence, and outcomes of immune checkpoint inhibitor-induced myocarditis. JACC CardioOncol. 2022;4:689-700.

124. Noseda R, Ruinelli L, Gaag LCV, Ceschi A. Pre-existing cardiovascular conditions as clinical predictors of myocarditis reporting with immune checkpoint inhibitors: a VigiBase study. Cancers. 2020;12:3480.

125. Mitsuboshi S, Hamano H, Niimura T, et al. Association between immune checkpoint inhibitor-induced myocarditis and concomitant use of thiazide diuretics. Int J Cancer. 2023;153:1472-6.

126. Chen X, Jiang A, Zhang R, et al. Immune checkpoint inhibitor-associated cardiotoxicity in solid tumors: real-world incidence, risk factors, and prognostic analysis. Front Cardiovasc Med. 2022;9:882167.

127. Coustal C, Vanoverschelde J, Quantin X, et al. Prognosis of immune checkpoint inhibitors-induced myocarditis: a case series. J Immunother Cancer. 2023;11:e004792.

128. Lee C, Drobni ZD, Zafar A, et al. Pre-existing autoimmune disease increases the risk of cardiovascular and noncardiovascular events after immunotherapy. JACC CardioOncol. 2022;4:660-9.

129. Yeung T, McLean C, Kaye DM, et al. Immune checkpoint inhibitor myocarditis and cellular rejection in orthotopic heart transplant recipients. JACC CardioOncol. 2022;4:717-21.

130. Heilbroner SP, Few R, Mueller J, et al. Predicting cardiac adverse events in patients receiving immune checkpoint inhibitors: a machine learning approach. J Immunother Cancer. 2021;9:e002545.

131. L'Orphelin JM, Dollalille C, Akroun J, Alexandre J, Dompmartin A. Cardiovascular immunotoxicity associated with immune checkpoint inhibitors in metastatic melanoma. Cancers. 2023;15:2170.

132. Brumberger ZL, Branch ME, Klein MW, Seals A, Shapiro MD, Vasu S. Cardiotoxicity risk factors with immune checkpoint inhibitors. Cardiooncology. 2022;8:3.

133. Ruste V, Goldschmidt V, Laparra A, et al. The determinants of very severe immune-related adverse events associated with immune checkpoint inhibitors: a prospective study of the French REISAMIC registry. Eur J Cancer. 2021;158:217-24.

134. Herrmann J, Lenihan D, Armenian S, et al. Defining cardiovascular toxicities of cancer therapies: an international cardio-oncology society (IC-OS) consensus statement. Eur Heart J. 2022;43:280-99.

135. Lyon AR, López-Fernández T, Couch LS, et al. 2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS). Eur Heart J Cardiovasc Imaging. 2022;23:e333-465.

136. O'Shea MP, Karikalan SA, Yusuf A, et al. Complete heart block is a significant predictor of mortality in immune checkpoint inhibitor myocarditis. Cardiooncology. 2023;9:34.

137. Liu Q, Yu Y, Lin J, et al. Treatment strategy for myocarditis in patients using immune checkpoint inhibitors or combined anti-vascular endothelial growth factor therapy by clinical severity. Eur J Cancer. 2021;157:10-20.

138. Abitbol J, Vallet A, Routier E, Smaali S, Robert C. Immune checkpoint inhibitors-associated myocarditis without cardiovascular symptoms. Eur J Cancer. 2023;194:113319.

139. Nishikawa T, Inoue T, Otsuka T, et al. Prevalence and characteristics of immune checkpoint inhibitor-related myocardial damage: a prospective observational study. PLoS One. 2022;17:e0275865.

140. Thibault C, Vano Y, Soulat G, Mirabel M. Immune checkpoint inhibitors myocarditis: not all cases are clinically patent. Eur Heart J. 2018;39:3553.

141. Tanabe J, Watanabe N, Endo A, Nagami T, Inagaki S, Tanabe K. Asymptomatic immune checkpoint inhibitor-associated myocarditis. Intern Med. 2021;60:569-73.

142. Palaskas NL, Segura A, Lelenwa L, et al. Immune checkpoint inhibitor myocarditis: elucidating the spectrum of disease through endomyocardial biopsy. Eur J Heart Fail. 2021;23:1725-35.

143. Norwood TG, Westbrook BC, Johnson DB, et al. Smoldering myocarditis following immune checkpoint blockade. J Immunother Cancer. 2017;5:91.

144. Giblin GT, Dennehy C, Featherstone H, et al. Subclinical myocarditis after combination immune checkpoint inhibitor therapy. Circ Heart Fail. 2021;14:e007524.

145. Xiao J, Li X, Wang X, et al. Clinical characteristics and management of immune checkpoint inhibitor-related cardiotoxicity: a single-center experience. Front Cardiovasc Med. 2023;10:1093383.

146. Puzanov I, Subramanian P, Yatsynovich YV, et al. Clinical characteristics, time course, treatment and outcomes of patients with immune checkpoint inhibitor-associated myocarditis. J Immunother Cancer. 2021;9:e002553.

147. Escudier M, Cautela J, Malissen N, et al. Clinical features, management, and outcomes of immune checkpoint inhibitor-related cardiotoxicity. Circulation. 2017;136:2085-7.

148. Xu L, Xu M, Sun W, Zhang W, Song Z. Clinical characteristics and prognostic impact of immune checkpoint inhibitor-associated myocarditis in advanced non-small cell lung cancer. Invest New Drugs. 2023;41:816-24.

149. Makunts T, Saunders IM, Cohen IV, et al. Myocarditis occurrence with cancer immunotherapy across indications in clinical trial and post-marketing data. Sci Rep. 2021;11:17324.

150. Reyes-Gibby CC, Qdaisat A, Ferrarotto R, et al. Cardiovascular events after cancer immunotherapy as oncologic emergencies: analyses of 610 head and neck cancer patients treated with immune checkpoint inhibitors. Head Neck. 2024;46:627-35.

151. Dolladille C, Ederhy S, Allouche S, et al. Late cardiac adverse events in patients with cancer treated with immune checkpoint inhibitors. J Immunother Cancer. 2020;8:e000261.

152. Lewis RI, Seuthe K, Lennartz S, et al. Case report: sudden very late-onset near fatal PD1 inhibitor-associated myocarditis with out-of-hospital cardiac arrest after > 2.5 years of pembrolizumab treatment. Front Cardiovasc Med. 2024;11:1328378.

153. Li Y, Hu Y, Yang B, et al. Immunotherapy-related cardiotoxicity re-emergence in non-small cell lung cancer - a case report. Onco Targets Ther. 2021;14:5309-14.

154. Okauchi S, Sasatani Y, Yamada H, Satoh H. Late-onset pulmonary and cardiac toxicities in a patient treated with immune checkpoint inhibitor monotherapy. Klin Onkol. 2022;35:150-4.

155. Lam T, Wong JSL, Wong CK, et al. From bad to worse: the clinical spectrum of immune checkpoint inhibitor myocarditis and associated 3M syndrome with concomitant myositis and myasthenia. J Hong Kong College Cardiol. 2022;29:135-42.

156. Naidoo J, Murphy C, Atkins MB, et al. Society for immunotherapy of cancer (SITC) consensus definitions for immune checkpoint inhibitor-associated immune-related adverse events (irAEs) terminology. J Immunother Cancer. 2023;11:e006398.

157. Deharo F, Thuny F, Cadour F, et al. Diagnostic value of the international society of cardio-oncology definition for suspected immune checkpoint inhibitor-associated myocarditis. J Am Heart Assoc. 2023;12:e029211.

158. Brahmer JR, Abu-Sbeih H, Ascierto PA, et al. Society for immunotherapy of cancer (SITC) clinical practice guideline on immune checkpoint inhibitor-related adverse events. J Immunother Cancer. 2021;9:e002435.

159. Song W, Zheng Y, Dong M, et al. Electrocardiographic features of immune checkpoint inhibitor-associated myocarditis. Curr Probl Cardiol. 2023;48:101478.

160. Nishikawa T, Kunimasa K, Ohta-Ogo K, et al. Sinus node dysfunction co-occurring with immune checkpoint inhibitor-associated myocarditis. Intern Med. 2022;61:2161-5.

161. Zhang J, Jin H. A case of Brugada phenocopy alteration induced by immune checkpoint inhibitors. J Electrocardiol. 2023;81:269-71.

162. Haddad C, Herrera-Siklody C, Porretta AP, Carroz P, Pascale P, Pruvot E. From trivial to severe arrhythmias: the diagnostic role of multimodality imaging in inflammatory cardiomyopathy through a case series. Eur Heart J Case Rep. 2021;5:ytab418.

163. Gibson R, Delaune J, Szady A, Markham M. Suspected autoimmune myocarditis and cardiac conduction abnormalities with nivolumab therapy for non-small cell lung cancer. BMJ Case Rep. 2016;2016:bcr2016216228.

164. Power JR, Alexandre J, Choudhary A, et al. Electrocardiographic manifestations of immune checkpoint inhibitor myocarditis. Circulation. 2021;144:1521-3.

165. Xu Y, Song Y, Liu X, et al. Prediction of major adverse cardiac events is the first critical task in the management of immune checkpoint inhibitor-associated myocarditis. Cancer Commun. 2022;42:902-5.

166. Zlotoff DA, Hassan MZO, Zafar A, et al. Electrocardiographic features of immune checkpoint inhibitor associated myocarditis. J Immunother Cancer. 2021;9:e002007.

167. Vartanov A, Kalotra A, Varughese J, Gautam S, Kandel S, Hosmer W. Immunotherapy-associated complete heart block in a patient with NSCLC: a case report and literature review. Respir Med Case Rep. 2021;33:101390.

168. Fuentes-Antrás J, Peinado P, Guevara-Hoyer K, Díaz Del Arco C, Sánchez-Ramón S, Aguado C. Fatal autoimmune storm after a single cycle of anti-PD-1 therapy: a case of lethal toxicity but pathological complete response in metastatic lung adenocarcinoma. Hematol Oncol Stem Cell Ther. 2022;15:63-7.

169. Bae S, Vaysblat M, Ng J, Beccarino N, Makaryus J, Sarkar K. Durvalumab-associated myocarditis initially presenting with sinus bradycardia progressing into complete heart block. Cureus. 2023;15:e40171.

170. Gürdoğan M, Yalta K, Gürlertop Y, et al. Coexistence of anti-PD1-induced immune myocarditis and complete atrioventricular block: a case report. Am J Cardiol. 2023;207:35-8.

171. Hu C, Zhao L, Zhou C, et al. Pacemakers and methylprednisolone pulse therapy in immune-related myocarditis concomitant with complete heart block. Open Med. 2022;17:2109-16.

172. Giancaterino S, Abushamat F, Duran J, Lupercio F, DeMaria A, Hsu JC. Complete heart block and subsequent sudden cardiac death from immune checkpoint inhibitor-associated myocarditis. HeartRhythm Case Rep. 2020;6:761-4.

173. Bukamur HS, Mezughi H, Karem E, Shahoub I, Shweihat Y. Nivolumab-induced third degree atrioventricular block in a patient with stage IV squamous cell lung carcinoma. Cureus. 2019;11:e4869.

174. Behling J, Kaes J, Münzel T, Grabbe S, Loquai C. New-onset third-degree atrioventricular block because of autoimmune-induced myositis under treatment with anti-programmed cell death-1 (nivolumab) for metastatic melanoma. Melanoma Res. 2017;27:155-8.

175. Saad R, Ghaddar A, Zeenny RM. Pembrolizumab-induced myocarditis with complete atrioventricular block and concomitant myositis in a metastatic bladder cancer patient: a case report and review of the literature. J Med Case Rep. 2024;18:107.

176. Wang Y, Qian M, Jin X, et al. Case report: temporary pacing using active fixation lead and invasive electrophysiology studies for immune checkpoint inhibitor associated reversible advanced atrioventricular block. Front Cardiovasc Med. 2024;11:1336609.

177. Mahmood SS, Chen CL, Shapnik N, Krishnan U, Singh HS, Makker V. Myocarditis with tremelimumab plus durvalumab combination therapy for endometrial cancer: a case report. Gynecol Oncol Rep. 2018;25:74-7.

178. Salem JE, Bretagne M, Abbar B, et al. Abatacept/Ruxolitinib and screening for concomitant respiratory muscle failure to mitigate fatality of immune-checkpoint inhibitor myocarditis. Cancer Discov. 2023;13:1100-15.

179. Zhang J, Li J, Zhai L, Lin L. Coexisting of myasthenia gravis and fulminant myocarditis induced by nivolumab in a patient with ureteral epithelial cancer. Neuroendocrinol Lett. 2021;42:383-6.

180. Giovannini E, Bonasoni MP, D'Aleo M, et al. Pembrolizumab-induced fatal myasthenia, myocarditis, and myositis in a patient with metastatic melanoma: autopsy, histological, and immunohistochemical findings-a case report and literature review. Int J Mol Sci. 2023;24:10919.

181. Schneider BJ, Naidoo J, Santomasso BD, et al. Management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: ASCO guideline update. J Clin Oncol. 2021;39:4073-126.

182. Kurzhals JK, Graf T, Boch K, et al. Serum troponin T concentrations are frequently elevated in advanced skin cancer patients prior to immune checkpoint inhibitor therapy: experience from a single tertiary referral center. Front Med. 2021;8:691618.

183. Rini BI, Moslehi JJ, Bonaca M, et al. Prospective cardiovascular surveillance of immune checkpoint inhibitor-based combination therapy in patients with advanced renal cell cancer: data from the phase III JAVELIN renal 101 trial. J Clin Oncol. 2022;40:1929-38.

184. Waissengein B, Abu Ata B, Merimsky O, et al. The predictive value of high sensitivity troponin measurements in patients treated with immune checkpoint inhibitors. Clin Res Cardiol. 2023;112:409-18.

185. Lehmann LH, Heckmann MB, Bailly G, et al. Cardiomuscular biomarkers in the diagnosis and prognostication of immune checkpoint inhibitor myocarditis. Circulation. 2023;148:473-86.

186. Lei Y, Zheng X, Huang Q, Li X, Qiu M, Liu M. Intrinsic differences in immune checkpoint inhibitor-induced myocarditis: a retrospective analysis of real world data. Front Pharmacol. 2022;13:914928.

187. Ivanovic M, Chan A, Cheng E, et al. The impact of routine cardiac troponin I-based cardiotoxicity screening on clinical outcomes in patients on cancer immunotherapy. medRxiv. 2024:2024.

188. Ang E, Mweempwa A, Heron C, et al. Cardiac troponin I and T in checkpoint inhibitor-associated myositis and myocarditis. J Immunother. 2021;44:162-3.

189. Liu S, Chan J, Brinc D, et al. Immune checkpoint inhibitor-associated myocarditis with persistent troponin elevation despite abatacept and prolonged immunosuppression. JACC CardioOncol. 2020;2:800-4.

190. Rossi VA, Gawinecka J, Dimitriou F, et al. Value of troponin T versus I in the diagnosis of immune checkpoint inhibitor-related myocarditis and myositis: rechallenge? ESC Heart Fail. 2023;10:2680-5.

191. Lee Chuy K, Oikonomou EK, Postow MA, et al. Myocarditis surveillance in patients with advanced melanoma on combination immune checkpoint inhibitor therapy: the memorial sloan kettering cancer center experience. Oncologist. 2019;24:e196-7.

192. Waliany S, Neal JW, Reddy S, et al. Myocarditis surveillance with high-sensitivity troponin I during cancer treatment with immune checkpoint inhibitors. JACC CardioOncol. 2021;3:137-9.

193. Sarocchi M, Grossi F, Arboscello E, et al. Serial troponin for early detection of nivolumab cardiotoxicity in advanced non-small cell lung cancer patients. Oncologist. 2018;23:936-42.

194. Scard C, Nguyen JM, Varey E, Moustaghfir I, Khammari A, Dreno B. Cardiac adverse events associated with anti-PD-1 therapy in patients treated for advanced melanoma: relevance of dosing troponin T levels. Eur J Dermatol. 2021;31:205-12.

195. Tamura Y, Tamura Y, Yamada K, et al. Routine assessment of cardiotoxicity in patients undergoing long-term immune checkpoint inhibitor therapy. Heart Vessels. 2022;37:1859-65.

196. Tang X, Li Y, Huang H, et al. Early evaluation of severe immune checkpoint inhibitor-associated myocarditis: a real-world clinical practice. J Cancer Res Clin Oncol. 2023;149:8345-57.

197. Lee SH, Cho I, You SC, et al. Cancer therapy-related cardiac dysfunction in patients treated with a combination of an immune checkpoint inhibitor and doxorubicin. Cancers. 2022;14:2320.

198. She J, Liu H, Wu H, Tuerhongjiang G, Zheng T, Bai L. Cardiotoxicity related to immune checkpoint inhibitors: a real-world retrospective analysis. Front Cardiovasc Med. 2022;9:838488.

199. Zhuang Y, An Q, Wang F, et al. The role of circulating biomarkers in predicting the 30-day mortality of immune checkpoint inhibitors-related myocarditis: a retrospective cohort study. Intern Emergy Med. 2024;19:377-89.

200. Zhang W, Tan Y, Li Y, Liu J. Neutrophil to lymphocyte ratio as a predictor for immune-related adverse events in cancer patients treated with immune checkpoint inhibitors: a systematic review and meta-analysis. Front Immunol. 2023;14:1234142.

201. Guo Y, Xiang D, Wan J, Yang L, Zheng C. Focus on the dynamics of neutrophil-to-lymphocyte ratio in cancer patients treated with immune checkpoint inhibitors: a meta-analysis and systematic review. Cancers. 2022;14:5297.

202. Drobni ZD, Zafar A, Zubiri L, et al. Decreased absolute lymphocyte count and increased neutrophil/lymphocyte ratio with immune checkpoint inhibitor-associated myocarditis. J Am Heart Assoc. 2020;9:e018306.

203. Liang L, Cui C, Lv D, et al. Inflammatory biomarkers in assessing severity and prognosis of immune checkpoint inhibitor-associated cardiotoxicity. ESC Heart Fail. 2023;10:1907-18.

204. Yin N, Liu X, Ye X, Song W, Lu J, Chen X. PD-1 inhibitor therapy causes multisystem immune adverse reactions: a case report and literature review. Front Oncol. 2022;12:961266.

205. Boughdad S, Latifyan S, Fenwick C, et al. 68Ga-DOTATOC PET/CT to detect immune checkpoint inhibitor-related myocarditis. J Immunother Cancer. 2021;9:e003594.

206. Čelutkienė J, Pudil R, López-Fernández T, et al. Role of cardiovascular imaging in cancer patients receiving cardiotoxic therapies: a position statement on behalf of the Heart Failure Association (HFA), the European Association of Cardiovascular Imaging (EACVI) and the Cardio-Oncology Council of the European Society of Cardiology (ESC). Eur J Heart Fail. 2020;22:1504-24.

207. Khanna S, Li C, Amarasekera AT, et al. Echocardiographic parameters of cardiac structure and function in the diagnosis of acute myocarditis in adult patients: a systematic review and meta-analysis. Echocardiography. 2024;41:e15760.

208. Pradhan R, Nautiyal A, Singh S. Diagnosis of immune checkpoint inhibitor-associated myocarditis: a systematic review. Int J Cardiol. 2019;296:113-21.

209. Quinaglia T, Gongora C, Awadalla M, et al. Global circumferential and radial strain among patients with immune checkpoint inhibitor myocarditis. JACC Cardiovasc Imaging. 2022;15:1883-96.

210. Abraham TP, Aras MA. Echo-strain to check up on checkpoint inhibitors. J Am Coll Cardiol. 2020;75:479-81.

211. Zhao SH, Yun H, Chen CZ, et al. The prognostic value of global myocardium strain by CMR-feature tracking in immune checkpoint inhibitor-associated myocarditis. Eur Radiol. 2022;32:7657-67.

212. Esposito R, Fedele T, Orefice S, et al. An emergent form of cardiotoxicity: acute myocarditis induced by immune checkpoint inhibitors. Biomolecules. 2021;11:785.

213. Awadalla M, Mahmood SS, Groarke JD, et al. Global longitudinal strain and cardiac events in patients with immune checkpoint inhibitor-related myocarditis. J Am Coll Cardiol. 2020;75:467-78.

214. Mirza J, Sunder SS, Karthikeyan B, et al. Echocardiographic and cardiac MRI comparison of longitudinal strain and strain rate in cancer patients treated with immune checkpoint inhibitors. J Pers Med. 2022;12:1332.

215. Tamura Y, Tamura Y, Takemura R, et al. Longitudinal strain and troponin I elevation in patients undergoing immune checkpoint inhibitor therapy. JACC CardioOncol. 2022;4:673-85.

216. Song W, Zhang N, Lv T, et al. Prognostic value of cardiovascular magnetic resonance in immune checkpoint inhibitor-associated myocarditis: a systematic review and meta-analysis. Cancer Innov. 2024;3:e109.

217. Khattab M, Kwan J, Chehayeb RJ, et al. Prospective evaluation of immune checkpoint inhibitor myocarditis with serial quantitative cardiovascular magnetic resonance and correlations with cardiovascular outcomes. J Cardiovasc Magn R. 2024;26:100686.

218. Wu NC, Feng YH, Kuo YH, et al. Clinical features and outcomes of immune checkpoint inhibitor-associated cardiovascular toxicities. Acta Cardiol Sin. 2022;38:39-46.

219. Ferreira VM, Schulz-Menger J, Holmvang G, et al. Cardiovascular magnetic resonance in nonischemic myocardial inflammation: expert recommendations. J Am Coll Cardiol. 2018;72:3158-76.

220. Faron A, Isaak A, Mesropyan N, et al. Cardiac MRI depicts immune checkpoint inhibitor-induced myocarditis: a prospective study. Radiology. 2021;301:602-9.

221. Thavendiranathan P, Zhang L, Zafar A, et al. Myocardial T1 and T2 mapping by magnetic resonance in patients with immune checkpoint inhibitor-associated myocarditis. J Am Coll Cardiol. 2021;77:1503-16.

222. Zornitzki L, Havakuk O, Rozenbaum Z, et al. Immune checkpoint inhibitor-induced myocarditis vs. COVID-19 vaccine-induced myocarditis-same or different? Life. 2022;12:1366.

223. Zhang L, Awadalla M, Mahmood SS, et al. Cardiovascular magnetic resonance in immune checkpoint inhibitor-associated myocarditis. Eur Heart J. 2020;41:1733-43.

224. Pan JA, Lee YJ, Salerno M. Diagnostic performance of extracellular volume, native T1, and T2 mapping versus lake Louise criteria by cardiac magnetic resonance for detection of acute myocarditis: a meta-analysis. Circ Cardiovasc Imaging. 2018;11:e007598.

225. Kato S, Fukui K, Kodama S, et al. Acute myocarditis by immune checkpoint inhibitor identified by quantitative pixel-wise analysis of native T1 mapping. Circ Cardiovasc Imaging. 2021;14:e012177.

226. Arcari L, Camastra G, Ciolina F, Danti M, Cacciotti L. Imaging edema in immune checkpoint inhibitor myocarditis: a moving target. J Am Coll Cardiol. 2021;78:416-7.

227. Nishikawa Y, Takaoka H, Kanda M, et al. T1 mapping enabled detection and follow-up of rare immune checkpoint inhibitor myocarditis. Circ J. 2024;88:259.

228. Arcari L, Tini G, Camastra G, et al. Cardiac magnetic resonance imaging in immune check-point inhibitor myocarditis: a systematic review. J Imaging. 2022;8:99.

229. Ederhy S, Salem JE, Dercle L, et al. Role of cardiac imaging in the diagnosis of immune checkpoints inhibitors related myocarditis. Front Oncol. 2021;11:640985.

230. Kondapalli L, Medina T, Groves DW. Practical cardiovascular imaging approach to diagnose immune checkpoint inhibitor myocarditis. Eur Heart J Cardiovasc Imaging. 2021;22:372-4.

231. Nowatzke J, Guedeney P, Palaskas N, et al. Coronary artery disease and revascularization associated with immune checkpoint blocker myocarditis: report from an international registry. Eur J Cancer. 2022;177:197-205.

232. Gosangi B, Wang Y, Rubinowitz AN, et al. Cardiothoracic complications of immune checkpoint inhibitors. Clin Imaging. 2023;102:98-108.

233. Cadour F, Cautela J, Rapacchi S, et al. Cardiac MRI features and prognostic value in immune checkpoint inhibitor-induced myocarditis. Radiology. 2022;303:512-21.

234. Higgins AY, Arbune A, Soufer A, et al. Left ventricular myocardial strain and tissue characterization by cardiac magnetic resonance imaging in immune checkpoint inhibitor associated cardiotoxicity. PLoS One. 2021;16:e0246764.

235. Zhao SH, Yun H, Chen CZ, et al. Applying quantitative CMR parameters for detecting myocardial lesion in immune checkpoint inhibitors-associated myocarditis. Eur J Radiol. 2022;156:110558.

236. Jeyashanmugaraja GP, Kwan J, Shah N, et al. Left atrial evaluation in immune check point inhibitor myocarditis using cardiac magnetic resonance imaging and correlations with cardiovascular outcomes. J Cardiovasc Magn R. 2024;26:100677.

237. Li Z, Zhao R, Wang C, et al. Cardiac magnetic resonance-based layer-specific strain in immune checkpoint inhibitor-associated myocarditis. ESC Heart Fail. 2024;11:1061-75.

238. Rischpler C, Rassaf T, Umutlu L, Herrmann K, Schlosser TW, Totzeck M. Imaging the inflammatory response in checkpoint inhibition myocarditis. J Nucl Med. 2022;63:14-6.

239. Arponen O, Skyttä T. Immune checkpoint inhibitor-induced myocarditis not visible with cardiac magnetic resonance imaging but detected with PET-CT: a case report. Acta Oncol. 2020;59:490-2.

240. Tong J, Vogiatzakis N, Senechal-dumais I, et al. Cardiac magnetic resonance (CMR) and 18F-FDG positron emission tomography (PET) imaging in suspected immune checkpoint inhibitor (ICI)-associated myocarditis. J Cardiovasc Magn R. 2024;26:100689.

241. Palaskas N, Lu Y, Caldwell R, et al. 749 use of positron emission tomography for the diagnosis of immune checkpoint inhibitor myocarditis J Immunother Cancer 2022. p. A1–1603.

242. Guo CW, Alexander M, Dib Y, et al. A closer look at immune-mediated myocarditis in the era of combined checkpoint blockade and targeted therapies. Eur J Cancer. 2020;124:15-24.

243. Nazir MS, Hughes DJ, Chand G, et al. [99mTc]-labelled anti-programmed death-ligand 1 single-domain antibody SPECT/CT: a novel imaging biomarker for myocardial PD-L1 expression. EJNMMI Res. 2023;13:44.

244. Ederhy S, Devos P, Pinna B, et al. 18F-fluorodeoxyglucose positron emission tomography/computed tomography imaging for the diagnosis of immune checkpoint inhibitor-associated myocarditis. Arch Cardiovasc Dis. 2022;115:114-6.

245. Vicino A, Hottinger AF, Latifyan S, et al. Immune checkpoint inhibitor-related myositis and myocarditis: diagnostic pitfalls and imaging contribution in a real-world, institutional case series. J Neurol. 2024;271:1947-58.

246. Finke D, Heckmann MB, Herpel E, et al. Early detection of checkpoint inhibitor-associated myocarditis using 68Ga-FAPI PET/CT. Front Cardiovasc Med. 2021;8:614997.

247. Niu N, Huo L, Zhang S, Liu Y, Li X. Immune checkpoint inhibitor-associated cardiotoxicity detected by 68Ga-DOTATATE PET/CT and 68Ga-FAPI PET/CT. Eur Heart J Cardiovasc Imaging. 2022;23:e123.

248. Zhang X, Song W, Qin C, Lan X. Different displays of 13N-NH3 myocardial perfusion and cardiac 68Ga-FAPI PET in immune checkpoint inhibitor-associated myocarditis-induced heart failure. Eur J Nucl Med Mol Imaging. 2023;50:964-5.

249. Ederhy S, Fenioux C, Cholet C, et al. Immune checkpoint inhibitor myocarditis with normal cardiac magnetic resonance imaging: importance of cardiac biopsy and early diagnosis. Can J Cardiol. 2021;37:1654-6.

250. Seferović PM, Tsutsui H, McNamara DM, et al. Heart failure association of the ESC, heart failure society of America and Japanese heart failure society position statement on endomyocardial biopsy. Eur J Heart Fail. 2021;23:854-71.

251. Aretz HT. Myocarditis: the Dallas criteria. Hum Pathol. 1987;18:619-24.

252. Atallah-Yunes SA, Kadado AJ, Kaufman GP, Hernandez-Montfort J. Immune checkpoint inhibitor therapy and myocarditis: a systematic review of reported cases. J Cancer Res Clin Oncol. 2019;145:1527-57.

253. Jimenez J, Kostelecky N, Mitchell JD, et al. Clinicopathological classification of immune checkpoint inhibitor-associated myocarditis: possible refinement by measuring macrophage abundance. Cardiooncology. 2023;9:14.

254. Sobol I, Chen CL, Mahmood SS, Borczuk AC. Histopathologic characterization of myocarditis associated with immune checkpoint inhibitor therapy. Arch Pathol Lab Med. 2020;144:1392-6.

255. Matsuo K, Ishiguro T, Najama T, Shimizu Y, Kobayashi Y, Mutou M. Nivolumab-induced myocarditis successfully treated with corticosteroid therapy: a case report and review of the literature. Intern Med. 2019;58:2367-72.

256. Huang F, Ammirati E, Ponnaiah M, et al. Fulminant myocarditis proven by early biopsy and outcomes. Eur Heart J. 2023;44:5110-24.

257. Murphy L, McGuckin M, Giblin G, et al. The role of endomyocardial biopsy in suspected myocarditis in the contemporary era: a 10-year National Transplant Centre experience. Cardiovasc Pathol. 2021;54:107366.

258. Jain P, Gutierrez Bugarin J, Guha A, et al. Cardiovascular adverse events are associated with usage of immune checkpoint inhibitors in real-world clinical data across the United States. ESMO Open. 2021;6:100252.

259. Kondapalli L, Neilan TG. Immune checkpoint inhibitors and cardiovascular events among patients with cancer: a window into the critical role of the immune system in cardiovascular biology. Eur Heart J. 2021;42:4978-80.

260. Shalata W, Abu-Salman A, Steckbeck R, Mathew Jacob B, Massalha I, Yakobson A. Cardiac toxicity associated with immune checkpoint inhibitors: a systematic review. Cancers. 2021;13:5218.

261. Mirna M, Schmutzler L, Topf A, et al. A novel clinical score for differential diagnosis between acute myocarditis and acute coronary syndrome - the SAlzburg MYocarditis (SAMY) score. Front Med. 2022;9:875682.

262. Huang X, Gao Y, Hua F, Ying J. Differential diagnosis of fulminant myocarditis and acute coronary syndromes in the case of failure of coronary angiography: a case report. Front Cardiovasc Med. 2021;8:690974.

263. Drobni ZD, Alvi RM, Taron J, et al. Association between immune checkpoint inhibitors with cardiovascular events and atherosclerotic plaque. Circulation. 2020;142:2299-311.

264. Cautela J, Rouby F, Salem JE, et al. Acute coronary syndrome with immune checkpoint inhibitors: a proof-of-concept case and pharmacovigilance analysis of a life-threatening adverse event. Can J Cardiol. 2020;36:476-81.

265. Laenens D, Yu Y, Santens B, et al. Incidence of cardiovascular events in patients treated with immune checkpoint inhibitors. J Clin Oncol. 2022;40:3430-8.

266. Ahmed T, Yadav RK, Abedin ZU, et al. Immune checkpoint inhibitor-related acute myocarditis masquerading as acute coronary syndrome. Curr Probl Cardiol. 2023;48:101577.

267. Khreisat A, Bartosek N, Amal T, Dalal B. Durvalumab-induced myocarditis and dilated cardiomyopathy in a patient with non-small cell lung cancer: a diagnostic conundrum. Cureus. 2024;16:e51456.

268. Kushnareva E, Kushnarev V, Artemyeva A, Mitrofanova L, Moiseeva O. Myocardial PD-L1 expression in patients with ischemic and non-ischemic heart failure. Front Cardiovasc Med. 2021;8:759972.

269. Baban B, Liu JY, Qin X, Weintraub NL, Mozaffari MS. Upregulation of programmed death-1 and its ligand in cardiac injury models: interaction with GADD153. PLoS One. 2015;10:e0124059.

270. Inno A, Maurea N, Metro G, Carbone A, Russo A, Gori S. Immune checkpoint inhibitors-associated pericardial disease: a systematic review of case reports. Cancer Immunol Immunother. 2021;70:3041-53.

271. Gong J, Drobni ZD, Zafar A, et al. Pericardial disease in patients treated with immune checkpoint inhibitors. J Immunother Cancer. 2021;9:e002771.

272. Kuhnly NM, Coviello JS. A case study of myopericarditis due to immune checkpoint inhibitor therapy: proposed surveillance and management. J Am Assoc Nurse Pract. 2023;35:317-21.

273. Ederhy S, Dolladille C, Thuny F, Alexandre J, Cohen A. Takotsubo syndrome in patients with cancer treated with immune checkpoint inhibitors: a new adverse cardiac complication. Eur J Heart Fail. 2019;21:945-7.

274. Tan NYL, Anavekar NS, Wiley BM. Concomitant myopericarditis and takotsubo syndrome following immune checkpoint inhibitor therapy. BMJ Case Rep. 2020;13:e235265.

275. Ederhy S, Cautela J, Ancedy Y, Escudier M, Thuny F, Cohen A. Takotsubo-like syndrome in cancer patients treated with immune checkpoint inhibitors. JACC Cardiovasc Imaging. 2018;11:1187-90.

276. Serzan M, Rapisuwon S, Krishnan J, Chang IC, Barac A. Takotsubo cardiomyopathy associated with checkpoint inhibitor therapy: endomyocardial biopsy provides pathological insights to dual diseases. JACC CardioOncol. 2021;3:330-4.

277. Awadalla M, Golden DLA, Mahmood SS, et al. Influenza vaccination and myocarditis among patients receiving immune checkpoint inhibitors. J Immunother Cancer. 2019;7:53.

278. Kondapalli L, Hsia J, Miller R, Flaig TW, Bonaca MP. Burden of cardiovascular disease in immune checkpoint inhibitor-treated patients: reconciling adjudicated and coded outcomes. JACC CardioOncol. 2022;4:649-56.

279. Nishiyama K, Morikawa K, Shinozaki Y, et al. Case report: electrocardiographic changes in pembrolizumab-induced fatal myocarditis. Front Immunol. 2023;14:1078838.

280. Stein-Merlob AF, Hsu JJ, Colton B, et al. Keeping immune checkpoint inhibitor myocarditis in check: advanced circulatory mechanical support as a bridge to recovery. ESC Heart Fail. 2021;8:4301-6.

281. Benassaia E, Vallet A, Rouleau E, Ederhy S, Robert C. Troponin increase during immunotherapy: not always myocarditis. Eur J Cancer. 2021;157:424-7.

282. Ai L, Gao J, Zhao S, et al. Nivolumab-associated DRESS in a genetic susceptible individual. J Immunother Cancer. 2021;9:e002879.

283. Tay SH, Toh MMX, Thian YL, et al. Cytokine release syndrome in cancer patients receiving immune checkpoint inhibitors: a case series of 25 patients and review of the literature. Front Immunol. 2022;13:807050.

284. Cozma A, Sporis ND, Lazar AL, et al. Cardiac toxicity associated with immune checkpoint inhibitors: a systematic review. Int J Mol Sci. 2022;23:10948.

285. He Y, Chen W, Cai J, Luo C, Zhou C, Wei L. PD-1 inhibitors-associated myocarditis in non-small cell lung cancer patients. J Thorac Dis. 2023;15:4606-19.

286. Allenbach Y, Anquetil C, Manouchehri A, et al. Immune checkpoint inhibitor-induced myositis, the earliest and most lethal complication among rheumatic and musculoskeletal toxicities. Autoimmun Rev. 2020;19:102586.

287. Boutros A, Bottini A, Rossi G, et al. Neuromuscular and cardiac adverse events associated with immune checkpoint inhibitors: pooled analysis of individual cases from multiple institutions and literature. ESMO Open. 2023;8:100791.

288. Touat M, Maisonobe T, Knauss S, et al. Immune checkpoint inhibitor-related myositis and myocarditis in patients with cancer. Neurology. 2018;91:e985-94.

289. Liu H, Li Y, Li J, et al. Musculoskeletal adverse events induced by immune checkpoint inhibitors: a large-scale pharmacovigilance study. Front Pharmacol. 2023;14:1199031.

290. Anquetil C, Salem JE, Lebrun-Vignes B, et al. Immune checkpoint inhibitor-associated myositis: expanding the spectrum of cardiac complications of the immunotherapy revolution. Circulation. 2018;138:743-5.

291. Haanen J, Obeid M, Spain L, et al. Management of toxicities from immunotherapy: ESMO clinical practice guideline for diagnosis, treatment and follow-up. Ann Oncol. 2022;33:1217-38.

292. Pathak R, Katel A, Massarelli E, Villaflor VM, Sun V, Salgia R. Immune checkpoint inhibitor-induced myocarditis with myositis/myasthenia gravis overlap syndrome: a systematic review of cases. Oncologist. 2021;26:1052-61.

293. Qin Y, Chen S, Gui Q, et al. Prognosis of immune checkpoint inhibitor-induced myasthenia gravis: a single center experience and systematic review. Front Neurol. 2024;15:1372861.

294. Matsui H, Kawai T, Sato Y, et al. A fatal case of myocarditis following myositis induced by pembrolizumab treatment for metastatic upper urinary tract urothelial carcinoma. Int Heart J. 2020;61:1070-4.

295. Wang S, Peng D, Zhu H, et al. Acetylcholine receptor binding antibody-associated myasthenia gravis, myocarditis, and rhabdomyolysis induced by tislelizumab in a patient with colon cancer: a case report and literature review. Front Oncol. 2022;12:1053370.

296. Ünlütürk Z, Karagülmez AM, Hayti B, Erdoğan Ç. Myocarditis-myositis-myasthenia gravis overlap syndrome depending on immune checkpoint inhibitor. J Neurosci Rural Pract. 2023;14:143-4.

297. Deharo F, Carvelli J, Cautela J, et al. Immune checkpoint inhibitor-induced myositis/myocarditis with myasthenia gravis-like misleading presentation: a case series in intensive care unit. J Clin Med. 2022;11:5611.

298. Cuenca JA, Hanmandlu A, Wegner R, et al. Management of respiratory failure in immune checkpoint inhibitors-induced overlap syndrome: a case series and review of the literature. BMC Anesthesiol. 2023;23:310.

299. Cooksley T, Weaver J, McNamara M, Lorigan P. Immune checkpoint inhibitor-related myasthenia gravis, myositis and myocarditis: a triad but not at the same time? QJM. 2024;117:373-4.

300. Shibuya R, Baba K, Furuta R, et al. Liver cancer with overlapping myasthenia gravis, myocarditis, seronegative autoimmune autonomic ganglionopathy, and myositis symptoms induced by atezolizumab. Intern Med. 2024;63:2193-8.

301. Zhao S, Zhou Y, Sun W, Li Z, Wang C. Clinical features, diagnosis, and management of pembrolizumab-induced myasthenia gravis. Clin Exp Immunol. 2023;211:85-92.

302. Huang YT, Chen YP, Lin WC, Su WC, Sun YT. Immune checkpoint inhibitor-induced myasthenia gravis. Front Neurol. 2020;11:634.

303. Safa H, Johnson DH, Trinh VA, et al. Immune checkpoint inhibitor related myasthenia gravis: single center experience and systematic review of the literature. J Immunother Cancer. 2019;7:319.

304. Longinow J, Zmaili M, Skoza W, et al. Immune checkpoint inhibitor induced myocarditis, myasthenia gravis, and myositis: a single-center case series. Cancer Med. 2023;12:2281-9.

305. Shirai T, Kiniwa Y, Sato R, et al. Presence of antibodies to striated muscle and acetylcholine receptor in association with occurrence of myasthenia gravis with myositis and myocarditis in a patient with melanoma treated with an anti-programmed death 1 antibody. Eur J Cancer. 2019;106:193-5.

306. Suzuki S, Nagane Y, Uzawa A, et al. Anti-striational antibodies: expanding their clinical significance. Clin Exp Neuroim. 2020;11:218-24.

307. Agrawal N, Khunger A, Vachhani P, et al. Cardiac toxicity associated with immune checkpoint inhibitors: case series and review of the literature. Case Rep Oncol. 2019;12:260-76.

308. Arman Ç, Ibrahim K, Elif OK, Hacer D, Yeşim P. Pembrolizumab-induced peripheral nervous system damage: a combination of myositis/ myasthenia overlap syndrome and motor axonal polyneuropathy. Ideggyogy Sz. 2023;76:422-6.

309. Li L, Liu W, Liu Y, Luo Z. Immune-related skeletal muscle and myocardium injury induced by camrelizumab. Advers Drug React J. 2021;23:447-8.

310. Ghosh N, Chan KK, Jivanelli B, Bass AR. Autoantibodies in patients with immune-related adverse events from checkpoint inhibitors: a systematic literature review. J Clin Rheumatol. 2022;28:e498-505.

311. Zhang L, Zlotoff DA, Awadalla M, et al. Major adverse cardiovascular events and the timing and dose of corticosteroids in immune checkpoint inhibitor-associated myocarditis. Circulation. 2020;141:2031-4.

312. Tokunaga T, Aoki M, Maruyama K, et al. Fulminant myocarditis during postoperative adjuvant chemotherapy for lung cancer with atezolizumab: a case report. J Med Case Rep. 2024;18:162.

313. Stefanovic F, Gomez-Caminero A, Jacobs DM, et al. Neural net modeling of checkpoint inhibitor related myocarditis and steroid response. Clin Pharmacol. 2022;14:69-90.

314. Thompson JA, Schneider BJ, Brahmer J, et al. NCCN guidelines insights: management of immunotherapy-related toxicities, version 1.2020. J Natl Compr Canc Netw. 2020;18:230-41.

315. Nishimura T, Ninomiya K, Nakashima M, et al. Fulminant myocarditis for non-small-cell carcinoma of the lung with nivolumab and ipilimumab plus chemotherapy. Intern Med. 2023;62:1319-22.

316. Cautela J, Zeriouh S, Gaubert M, et al. Intensified immunosuppressive therapy in patients with immune checkpoint inhibitor-induced myocarditis. J Immunother Cancer. 2020;8:e001887.

317. Acharya S, Lama S, Kanigicherla DA. Anti-thymocyte globulin for treatment of T-cell-mediated allograft rejection. World J Transplant. 2023;13:299-308.

318. Tay RY, Blackley E, McLean C, et al. Successful use of equine anti-thymocyte globulin (ATGAM) for fulminant myocarditis secondary to nivolumab therapy. Br J Cancer. 2017;117:921-4.

319. Jain V, Mohebtash M, Rodrigo ME, Ruiz G, Atkins MB, Barac A. Autoimmune myocarditis caused by immune checkpoint inhibitors treated with antithymocyte globulin. J Immunother. 2018;41:332-5.

320. Norwood TG, Lenneman CA, Westbrook BC, Litovsky SH, McKee SB, Conry RM. Evolution of immune checkpoint blockade-induced myocarditis over 2 years. JACC Case Rep. 2020;2:203-9.

321. Barry T, Gallen R, Freeman C, et al. Successful treatment of steroid-refractory checkpoint inhibitor myocarditis with globulin derived-therapy: a case report and literature review. Am J Med Sci. 2021;362:424-32.

322. Baclig N V, Ngo C, Yeh AC, et al. Steroid-refractory autoimmune myocarditis after pembrolizumab therapy: failure of equine anti-thymocyte globulin to prevent heart failure. J Clin Case Rep. 2019;2:1-4.

323. Wang C, Lin J, Wang Y, et al. Case series of steroid-resistant immune checkpoint inhibitor associated myocarditis: a comparative analysis of corticosteroid and tofacitinib treatment. Front Pharmacol. 2021;12:770631.

324. Allison AC, Eugui EM. Mycophenolate mofetil and its mechanisms of action. Immunopharmacology. 2000;47:85-118.

325. Reddy N, Moudgil R, Lopez-Mattei JC, et al. Progressive and reversible conduction disease with checkpoint inhibitors. Can J Cardiol. 2017;33:1335.e13-5.

326. Weaver JM, Dodd K, Knight T, et al. Improved outcomes with early immunosuppression in patients with immune-checkpoint inhibitor induced myasthenia gravis, myocarditis and myositis: a case series. Support Care Cancer. 2023;31:518.

327. Toyoshima R, Uehara J, Matsuzaki Y, Yoshimura A, Kitano S, Yoshino K. Troponin-guided utilization of methylprednisolone pulse, intravenous immunoglobulin, and mycophenolate mofetil for successful control of immune checkpoint inhibitor-related myocarditis. J Dermatol. 2024;51:e207-8.

328. Yogasundaram H, Alhumaid W, Chen JW, et al. Plasma exchange for immune checkpoint inhibitor-induced myocarditis. CJC Open. 2021;3:379-82.

329. Nguyen LS, Bretagne M, Arrondeau J, et al. Reversal of immune-checkpoint inhibitor fulminant myocarditis using personalized-dose-adjusted abatacept and ruxolitinib: proof of concept. J Immunother Cancer. 2022;10:e004699.

330. Jespersen MS, Fanø S, Stenør C, Møller AK. A case report of immune checkpoint inhibitor-related steroid-refractory myocarditis and myasthenia gravis-like myositis treated with abatacept and mycophenolate mofetil. Eur Heart J Case Rep. 2021;5:ytab342.

331. Esfahani K, Buhlaiga N, Thébault P, Lapointe R, Johnson NA, Miller WH Jr. Alemtuzumab for immune-related myocarditis due to PD-1 therapy. N Engl J Med. 2019;380:2375-6.

332. Aghel N, Gustafson D, Di Meo A, et al. Recurrent myocarditis induced by immune-checkpoint inhibitor treatment is accompanied by persistent inflammatory markers despite immunosuppressive treatment. JCO Precis Oncol. 2021;5:PO.

333. Mathai V, Black A, Lovibond S, Binny S, Lipton J, Moldovan C. Use of abatacept in steroid refractory, immune checkpoint-induced myocarditis. Intern Med J. 2021;51:1971-2.

334. Salem JE, Allenbach Y, Vozy A, et al. Abatacept for severe immune checkpoint inhibitor-associated myocarditis. N Engl J Med. 2019;380:2377-9.

335. Saibil SD, Bonilla L, Majeed H, et al. Fatal myocarditis and rhabdomyositis in a patient with stage IV melanoma treated with combined ipilimumab and nivolumab. Curr Oncol. 2019;26:e418-21.

336. Martinez-Calle N, Rodriguez-Otero P, Villar S, et al. Anti-PD1 associated fulminant myocarditis after a single pembrolizumab dose: the role of occult pre-existing autoimmunity. Haematologica. 2018;103:e318-21.

337. Gallegos C, Rottmann D, Nguyen VQ, Baldassarre LA. Myocarditis with checkpoint inhibitor immunotherapy: case report of late gadolinium enhancement on cardiac magnetic resonance with pathology correlate. Eur Heart J Case Rep. 2019;3:yty149.

338. Frigeri M, Meyer P, Banfi C, et al. Immune checkpoint inhibitor-associated myocarditis: a new challenge for cardiologists. Can J Cardiol. 2018;34:92.e1-3.

339. Zhang RS, Padegimas A, Murphy KM, et al. Treatment of corticosteroid refractory immune checkpoint inhibitor myocarditis with Infliximab: a case series. Cardiooncology. 2021;7:13.

340. Padegimas A, Agarwal P, Fleitman J, et al. Case series of ventricular tachycardia and myocarditis from programmed cell-death protein-1 inhibitor treated with infliximab. JACC Clin Electrophysiol. 2019;5:989-92.

341. Zanatta E, Cozzi M, Marson P, Cozzi F. The role of plasma exchange in the management of autoimmune disorders. Br J Haematol. 2019;186:207-19.

342. Ke G, Chen P, Luo J, et al. Plasma exchange plus glucocorticoids in the treatment of immune checkpoint inhibitor-induced myocarditis: a case series and review. Clin Cardiol. 2023;46:1481-7.

343. Kulikova V, Nedostup A, Blagova O, et al. Plasma exchange in patients with myocarditis: comparison study. Eur Heart J. 2020;41:ehaa946.2061.

344. Arangalage D, Delyon J, Lermuzeaux M, et al. Survival after fulminant myocarditis induced by immune-checkpoint inhibitors. Ann Intern Med. 2017;167:683-4.

345. Compton F, He L, Sarode R, et al. Immune checkpoint inhibitor toxicity: a new indication for therapeutic plasma exchange? J Clin Apher. 2021;36:645-8.

346. Yanase T, Moritoki Y, Kondo H, Ueyama D, Akita H, Yasui T. Myocarditis and myasthenia gravis by combined nivolumab and ipilimumab immunotherapy for renal cell carcinoma: a case report of successful management. Urol Case Rep. 2021;34:101508.

347. Schiopu SRI, Käsmann L, Schönermarck U, et al. Pembrolizumab-induced myocarditis in a patient with malignant mesothelioma: plasma exchange as a successful emerging therapy-case report. Transl Lung Cancer Res. 2021;10:1039-46.

348. Xing Q, Zhang ZW, Lin QH, et al. Myositis-myasthenia gravis overlap syndrome complicated with myasthenia crisis and myocarditis associated with anti-programmed cell death-1 (sintilimab) therapy for lung adenocarcinoma. Ann Transl Med. 2020;8:250.

349. Jeyakumar N, Etchegaray M, Henry J, et al. The terrible triad of checkpoint inhibition: a case report of myasthenia gravis, myocarditis, and myositis induced by cemiplimab in a patient with metastatic cutaneous squamous cell carcinoma. Case Rep Immunol. 2020;2020:5126717.

350. Boros P, Gondolesi G, Bromberg JS. High dose intravenous immunoglobulin treatment: mechanisms of action. Liver Transpl. 2005;11:1469-80.

351. Velikova T, Sekulovski M, Bogdanova S, et al. Intravenous immunoglobulins as immunomodulators in autoimmune diseases and reproductive medicine. Antibodies. 2023;12:20.

352. Lin Y, Yuan X, Chen L. Immune myocarditis related to sintilimab treatment in a patient with advanced lung adenocarcinoma: a case report. Front Cardiovasc Med. 2022;9:955527.

353. Yin B, Xiao J, Wang X, et al. Myocarditis and myositis/myasthenia gravis overlap syndrome induced by immune checkpoint inhibitor followed by esophageal hiatal hernia: a case report and review of the literature. Front Med. 2022;9:950801.

354. Cao J, Li Q, Zhi X, et al. Pembrolizumab-induced autoimmune Stevens-Johnson syndrome/toxic epidermal necrolysis with myositis and myocarditis in a patient with esophagogastric junction carcinoma: a case report. Transl Cancer Res. 2021;10:3870-6.

355. Nasr F, El Rassy E, Maalouf G, et al. Severe ophthalmoplegia and myocarditis following the administration of pembrolizumab. Eur J Cancer. 2018;91:171-3.

356. Yamaguchi S, Morimoto R, Okumura T, et al. Late-onset fulminant myocarditis with immune checkpoint inhibitor nivolumab. Can J Cardiol. 2018;34:812.e1-3.

357. Wang F, Liu Y, Xu W, Zhang C, Lv J, Ma S. Fulminant myocarditis induced by immune checkpoint inhibitor nivolumab: a case report and review of the literature. J Med Case Rep. 2021;15:336.

358. Komatsu M, Hirai M, Kobayashi K, et al. A rare case of nivolumab-related myasthenia gravis and myocarditis in a patient with metastatic gastric cancer. BMC Gastroenterol. 2021;21:333.

359. Xing Q, Zhang Z, Zhu B, et al. Case report: treatment for steroid-refractory immune-related myocarditis with tofacitinib. Front Immunol. 2022;13:944013.

360. Imai R, Ono M, Nishimura N, Suzuki K, Komiyama N, Tamura T. Fulminant myocarditis caused by an immune checkpoint inhibitor: a case report with pathologic findings. J Thorac Oncol. 2019;14:e36-8.

361. Rota E, Varese P, Agosti S, et al. Concomitant myasthenia gravis, myositis, myocarditis and polyneuropathy, induced by immune-checkpoint inhibitors: a life-threatening continuum of neuromuscular and cardiac toxicity. eNeurologicalSci. 2019;14:4-5.

362. Wang H, Tian R, Gao P, Wang Q, Zhang L. Tocilizumab for fulminant programmed death 1 inhibitor-associated myocarditis. J Thorac Oncol. 2020;15:e31-2.

363. Smith MR. Rituximab (monoclonal anti-CD20 antibody): mechanisms of action and resistance. Oncogene. 2003;22:7359-68.

364. Vesperinas-Castro A, Cortés-Vicente E. Rituximab treatment in myasthenia gravis. Front Neurol. 2023;14:1275533.

365. Lescoat A, Lelong M, Jeljeli M, et al. Combined anti-fibrotic and anti-inflammatory properties of JAK-inhibitors on macrophages in vitro and in vivo: perspectives for scleroderma-associated interstitial lung disease. Biochem Pharmacol. 2020;178:114103.

366. Kubo S, Yamaoka K, Kondo M, et al. The JAK inhibitor, tofacitinib, reduces the T cell stimulatory capacity of human monocyte-derived dendritic cells. Ann Rheum Dis. 2014;73:2192-8.

367. Liu Y, Jiang L. Tofacitinib for treatment in immune-mediated myocarditis: the first reported cases. J Oncol Pharm Pract. 2020:1078155220947141.

368. Ramesh R, Kozhaya L, McKevitt K, et al. Pro-inflammatory human Th17 cells selectively express P-glycoprotein and are refractory to glucocorticoids. J Exp Med. 2014;211:89-104.

369. Doms J, Prior JO, Peters S, Obeid M. Tocilizumab for refractory severe immune checkpoint inhibitor-associated myocarditis. Ann Oncol. 2020;31:1273-5.

370. Campochiaro C, Farina N, Tomelleri A, et al. Tocilizumab for the treatment of immune-related adverse events: a systematic literature review and a multicentre case series. Eur J Intern Med. 2021;93:87-94.

371. Fa'ak F, Buni M, Falohun A, et al. Selective immune suppression using interleukin-6 receptor inhibitors for management of immune-related adverse events. J Immunother Cancer. 2023;11:e006814.

372. Thomson AW, Bonham CA, Zeevi A. Mode of action of tacrolimus (FK506): molecular and cellular mechanisms. Ther Drug Monit. 1995;17:584-91.

373. Lee JW, Sicre de Fontbrune F, Wong Lee Lee L, et al. Ravulizumab (ALXN1210) vs eculizumab in adult patients with PNH naive to complement inhibitors: the 301 study. Blood. 2019;133:530-9.

374. Zadeh S, Price H, Drews R, Bouffard MA, Young LH, Narayanaswami P. Novel uses of complement inhibitors in myasthenia gravis-Two case reports. Muscle Nerve. 2024;69:368-72.

375. Nelke C, Pawlitzki M, Kerkhoff R, et al. Immune checkpoint inhibition-related myasthenia-myositis-myocarditis responsive to complement blockade. Neurol Neuroimmunol Neuroinflamm. 2023;11:e200177.

376. Frascaro F, Bianchi N, Sanguettoli F, et al. Immune checkpoint inhibitors-associated myocarditis: diagnosis, treatment and current status on rechallenge. J Clin Med. 2023;12:7737.

377. Shalata W, Attal ZG, Shhadi R, et al. Tolerated re-challenge of immunotherapy in a patient with ICI associated myocarditis: a case report and literature review. Medicina. 2023;59:1946.

378. Inno A, Roviello G, Ghidini A, et al. Rechallenge of immune checkpoint inhibitors: a systematic review and meta-analysis. Crit Rev Oncol Hematol. 2021;165:103434.

379. Lee DH, Armanious M, Huang J, Jeong D, Druta M, Fradley MG. Case of pembrolizumab-induced myocarditis presenting as torsades de pointes with safe re-challenge. J Oncol Pharm Pract. 2020;26:1544-8.

380. Menachery SM, Hang Y, Pritchard L, Poklepovic A, Bottinor W. Immune checkpoint inhibitor rechallenge in a patient with previous fulminant myocarditis. Am J Cardiol. 2023;199:33-6.

381. Ben Zadok O, Levi A, Divakaran S, Nohria A. Severe vs nonsevere immune checkpoint inhibitor-induced myocarditis: contemporary 1-year outcomes. JACC CardioOncol. 2023;5:732-44.

382. Peleg Hasson S, Salwen B, Sivan A, et al. Re-introducing immunotherapy in patients surviving immune checkpoint inhibitors-mediated myocarditis. Clin Res Cardiol. 2021;110:50-60.

383. Zhang L, Reynolds KL, Lyon AR, Palaskas N, Neilan TG. The evolving immunotherapy landscape and the epidemiology, diagnosis, and management of cardiotoxicity: JACC: CardioOncology primer. JACC CardioOncol. 2021;3:35-47.

384. Miguel M, Calvo E. Clinical challenges of immune checkpoint inhibitors. Cancer Cell. 2020;38:326-33.

385. Wang DY, Salem JE, Cohen JV, et al. Fatal toxic effects associated with immune checkpoint inhibitors: a systematic review and meta-analysis. JAMA Oncol. 2018;4:1721-8.

386. Guha A, Al-Kindi S, Jain P, Tashtish N, ElAmm C, Oliveira GH. Association between myocarditis and other immune-related adverse events secondary to immune checkpoint inhibitor use. Int J Cancer. 2020;147:1753-4.

387. Mir H, Alhussein M, Alrashidi S, et al. Cardiac complications associated with checkpoint inhibition: a systematic review of the literature in an important emerging area. Can J Cardiol. 2018;34:1059-68.

388. Delombaerde D, De Sutter J, Croes L, et al. Extensive CArdioVAscular characterization and follow-up of patients receiving immune checkpoint inhibitors: a prospective multicenter study. Pharmaceuticals. 2023;16:625.

389. Ando T, Ueda A, Ogawa K, et al. Prognosis of immune-related adverse events in patients with advanced gastric cancer treated with nivolumab or pembrolizumab: a multicenter retrospective analysis. In Vivo. 2021;35:475-82.

390. Cao R, Wu C, Lv Y, et al. Correlation between immune-related adverse events and treatment efficacy of anti-PD1 immunotherapy in patients with esophageal squamous cell carcinoma. Oncol Lett. 2023;25:55.

391. Das S, Ciombor KK, Haraldsdottir S, et al. Immune-related adverse events and immune checkpoint inhibitor efficacy in patients with gastrointestinal cancer with food and drug administration-approved indications for immunotherapy. Oncologist. 2020;25:669-79.

392. Zhong L, Wu Q, Chen F, Liu J, Xie X. Immune-related adverse events: promising predictors for efficacy of immune checkpoint inhibitors. Cancer Immunol Immunother. 2021;70:2559-76.

393. Ezponda Casajús A, Calvo Imirizaldu M, de Torres Tajes JP, et al. Immune-related adverse events as predictors of response in cancer patients undergoing immunotherapy. Radiologia. 2020;62:131-8.

394. Toribio-García I, Olivares-Hernández A, Miramontes-González JP, et al. Cardiotoxicity secondary to immune checkpoint inhibitors in the elderly: safety in real-world data. Cancers. 2023;15:4293.

395. Ge X, Jiang W, Li H, Wu Y, Li X, Cui S. Immune-related adverse events and outcomes among pan-cancer patients receiving immune checkpoint inhibitors: a monocentric real-world observational study. Cancer Med. 2023;12:18491-502.

396. Bruyère CL, Souquet PJ, Dalle S, et al. Investigating the impact of immune-related adverse events, glucocorticoid use and immunotherapy interruption on long-term survival outcomes. Cancers. 2021;13:2365.

The Journal of Cardiovascular Aging
ISSN 2768-5993 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/